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DISCLINATIONS AND EDGE DISLOCATIONS VIA THE AIRY
STRESS FUNCTION METHOD*

PIERLUIGI CESANAT, LUCIA DE LUCA¥, AND MARCO MORANDOTTI}

Abstract. We present a variational theory for lattice defects of rotational and translational
type. We focus on finite systems of planar wedge disclinations, disclination dipoles, and edge dislo-
cations, which we model as the solutions to minimum problems for isotropic elastic energies under
the constraint of kinematic incompatibility. Operating under the assumption of planar linearized
kinematics, we formulate the mechanical equilibrium problem in terms of the Airy stress function,
for which we introduce a rigorous analytical formulation in the context of incompatible elasticity.
Our main result entails the analysis of the energetic equivalence of systems of disclination dipoles and
edge dislocations in the asymptotics of their singular limit regimes. By adopting the regularization
approach via core radius, we show that, as the core radius vanishes, the asymptotic energy expansion
for disclination dipoles coincides with the energy of finite systems of edge dislocations. This proves
that Eshelby’s kinematic characterization of an edge dislocation in terms of a disclination dipole is
exact also from the energetic standpoint.
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Introduction. The modeling of translational and rotational defects in solids,
typically referred to as dislocations and disclinations, respectively, dates back to the
pioneering work of Vito Volterra on the investigation of the equilibrium configurations
of multiply connected bodies [93]. Dislocations, possibly the most common lattice de-
fects, are regarded as the main microscopic mechanism of ductility and plasticity of
metals and elastic crystals [80, 82, 91]. Disclinations appear at the lattice level in
metal alloys [38, 92], graphene [13, 95], and virus shells [57, 77]. Despite both being
line defects, their behavior is different, both geometrically and energetically. More-
over, the mathematical modeling is mostly available in the mechanical assumption
of cylindrical geometry, where the curves on which the defects are concentrated are
indeed line segments parallel to the cylinder axis.

Dislocations entail a violation of translational symmetry and are characterized by
the so-called Burgers vector. Here we consider only edge dislocations, namely, those
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whose Burgers vector is perpendicular to the dislocation line. Disclinations arise
as a violation of rotational symmetry and are characterized by the so-called Frank
angle. Disclinations are defined (see [8, 76]) as the “closure failure of rotation ...
for a closed circuit round the disclination centre” [8]. Conceptually, a planar wedge
disclination can be realized in the following way; see [93]. In an infinite cylinder,
remove a triangular wedge of material and restore continuity by gluing together the
two surfaces of the cut: this results in a positive wedge disclination; conversely, open
a surface with a vertical cut originating at the axis of the infinite cylinder through the
surface, insert an additional wedge of material into the cylinder through the opening,
and restore continuity of the material: this results in a negative wedge disclination
[84]. Because of the cylindrical geometry, we will work in the cross-section of the
material, where both disclination and dislocation lines are identified by points in the
two-dimensional sections. In this setting, the energy of an edge dislocation scales, far
away from its center, as the logarithm of the size of the domain, while the energy
of a single disclination is nonsingular and scales quadratically with the size of the
domain [67, 85]. In many observations disclinations appear in the form of dipoles
[58, 66, 84], which are pairs of wedge disclinations of opposite Frank angle placed at
a close (but finite) distance. This configuration has the effect of screening the mutual
elastic strains resulting in significantly lower energy than the one of single, isolated
disclinations.

A continuum theory for disclinations in the framework of linearized elasticity has
been developed and systematized, among a number of authors, by de Wit in [32] and
subsequently in [34, 35, 36]. A nonlinear theory of disclinations and dislocations is de-
veloped in [102], to which we refer the interested reader for a historical excursus and a
list of references to classical linearized theories, as well as to other early contributions
on the foundation of nonlinear theories. For more recent modeling approaches, in [3]
disclinations comprise a special case of g.disclinations, a general concept designed to
model phase transformations, grain boundaries, and other plastification mechanisms.
Qualitative and quantitative comparisons between the classical linearized elasticity
approach and the g.disclination theory are discussed in detail in [100]. The contri-
butions of [40] and [90] propose a mesoscale theory for crystal plasticity designed for
modeling the dynamic interplay of disclinations and dislocations based on linearized
kinematics and written in terms of elastic and plastic curvature tensors. Variational
analysis of a discrete model for planar disclinations is performed in [22]. Finally, we
point out the papers [2] and [96, 97], where a differential geometry approach to large
nonlinear deformations is considered.

While the body of work on dislocations is vast both in the mathematics [9, 26, 27,
43, 44, 51, 81] as well as in the physics and chemistry literature [39, 50, 52, 59, 60, 70]
due to their relevance in metallurgy and crystal plasticity, interest in disclinations has
been much lower. This disproportion owes to the fact that disclinations are thought to
be less predominant in the formation of plastic microstructures. However, a large body
of experimental evidence, some recent, has shown that disclinations, both in single
isolated as well as multidipole configurations, are in fact a very relevant plastification
mechanism, so that understanding their energetics and kinematics is crucial to under-
standing crystal microplasticity (see [1, 10, 11, 12, 20, 54, 55, 56, 61, 62, 63, 64, 65,
66, 68, 71, 72, 94], [53, section 12.3.3]). With this paper we intend to lay the founda-
tions for a general and comprehensive variational theory suitable for treating systems
of rotational and translational defects on a lattice. We focus on three different aspects:
we propose a variational model for finite systems of planar wedge disclinations; we
study dipoles of disclinations and we identify relevant energy scalings dictated by ge-
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ometry and loading parameters; finally, we prove the asymptotic energetic equivalence
of a dipole of wedge disclinations with an edge dislocation.

Main contributions and impact of this work. We operate under the assump-
tion of plane strain elastic displacements and under the approximation of linearized
kinematics so that contributions of individual defects can be added up via superposi-
tion. As we are mainly concerned with the modeling of experimental configurations
of metals and hard crystals, we restrict our analysis to the case of two-dimensional
plane strain geometries, leaving for future work the analysis in the configuration of
buckled membranes. We model disclinations and dislocations as point sources of
kinematic incompatibility following an approach analogous to those of [89] and [18].
Alternative approaches according to the stress-couple theory in linearized kinematics
are pursued in [32, 40, 90]. Despite their intrinsic limitations, linearized theories have
proven useful to describe properties of systems of dislocations in both continuous and
discrete models [17, 18, 41, 31, 4, 28, 30, 5, 6, 15, 14, 48, 7] (see also [87, 75, 49, 42]
for related nonlinear models for (edge) dislocations). In [83, 21, 19] systems of discli-
nations have been investigated in linear and finite elasticity models, and qualitative
as well as quantitative comparisons have been discussed.

By working in plane strain linearized kinematics, it is convenient to formulate
the mechanical equilibrium problem in terms of a scalar potential, the Airy stress
function of the system; see, e.g., [73, 74]. This is a classical method in two-dimensional
elasticity based on the introduction of a potential scalar function whose second-order
derivatives correspond to the components of the stress tensor (see [24, section 5.7]
and [88]). From a formal point of view, denoting by o;; the components of the 2 x 2
mechanical stress tensor, we write

0%v 0%v 9%
011 = 7 5 012 =021 = — 37 4 022 = 7 5
0z’ 02011’ ox?’

where v: R? D  — R is the Airy stress function. Upon introduction of the Airy
potential v, the equation of mechanical equilibrium Dive = 0 is identically satis-
fied, while the information on kinematic (in)compatibility is translated into a loading
source problem for the biharmonic equation for the scalar field v. By indicating with
€ the 2 x 2 symmetric strain tensor (related to o via the linear relation o = Ce, with C
being the fourth-order elasticity tensor), the mechanical equilibrium problem formu-
lated in terms of strains and stresses (which we refer to as the laboratory variables)
and in terms of the Airy potential formally read, respectively,

Cl%rl Curle = -0 %n Q, 1—22 A2y —0 inQ.
(0.1) Dive =0 in Q, and E
on=0 on 99 V2ut=0 on 9.

Here, F and v are the classical Young modulus and Poisson ratio, respectively; the
unit vectors ¢t and n are the tangential and normal directions to the boundary of €,
and 6 denotes a source term accounting for kinematic incompatibility. Existence of
the Airy stress function and the variational equivalence of the equilibrium problems
formulated in terms of strains and stresses, with the single-equation problem for the
Airy potential, are proved in [24] in simply connected domains for perfectly compatible
(that is, defect-free, § = 0) elasticity.

Our first results, Propositions 1.4 and 1.8 (and Corollaries 1.5 and 1.9), entail
the investigation of finite systems of isolated disclinations, modeled by a finite sum of
Dirac deltas placed at the disclination centers and modulated by their corresponding
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Frank angles (see [89]). Consequently, we take § = Zszl s*8,x, where {y*}[ | c Q
are the fixed (hence the term isolated) centers of the disclinations and we clarify the
equivalence, in terms of suitable notions of weak solutions (see Definition 1.3), of the
two formulations for mechanical equilibrium appearing in (0.1), thus generalizing the
analysis of [24] for nonzero Frank angles s*. In doing so, we construct a rigorous
variational setting so that the equilibrium problem formulated in terms of the Airy
potential is well posed in terms of existence, uniqueness, and regularity of solutions.
The Airy potentials corresponding to the singular strains and stresses are the classical
solutions for planar wedge disclinations computed in [93]—and correctly recovered
by our model—corresponding to the Green’s function for the bilaplacian operator.
An immediate application of our analysis is in providing a rigorous framework for
numerical calculations of lattice defects with the Airy potential method (see, e.g.,
[89, 101]). Additionally, we show that the solutions to the mechanical equilibrium
problem formulated in the Airy variable (the system on the right in (0.1)) can be
characterized as the minimizers of the following functional for the Airy stress function
defined over a suitable class of Sobolev functions (see (2.1) and (2.2)):

6, . 11+wv
(0.2) 7°(v; Q) := 5 R
Here, the bulk term of the functional coincides with the elastic energy measured in
terms of the laboratory variable, while the linear part v — (f,v) represents the work
performed by the point singularities (disclinations) and does not enter the mechanical
energy balance. In the remainder of the paper we exploit extensively the variational
characterization for the problem formulated in the Airy variable in the analysis of
singular regimes.

Second, we show the energetic equivalence between finite families of wedge discli-
nation dipoles and systems of edge dislocations. From the point of view of the applica-
tions in materials science, these systems are interesting because disclination dipoles are
fundamental building blocks to model kinks as well as grain boundaries [46, 69, 78],
which are important configurations in crystals and metals. To this end, we first con-
sider a dipole of wedge disclinations placed at a distance h > 0 along the z-axis, that
is, we set O = 56(n.0) = $0_n,) In (0.2). Then, replacing the linear term in (0.2)
with an average of the variable v at a scale € > h, we define the regularization of the
functional Z% as

(V0] — v(Av)?) dz + (0, v) .
Q

11+v
e (v) = 5=

(IV20]* = v(Av)?) dz
Q.

i fy e be) oo

where Q. :=Q\ B.(0).

Observe that, when keeping ¢ > 0 fixed and letting h — 0, we have that 6, — 0
and the functional If:f‘s converges to the sole bulk energy term integrated over €2.. On
the other hand, since

(0.3)

On/h 1
(0.4) 7" (w/h) = 5T (),

we obtain that linear rescalings by h of both the function v and the measure 8, induce
quadratic rescalings by h? of corresponding energies. Therefore, setting

~ 1
T (w) = 35T (hw),
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we have that
= 0 /h
I (w) =T " (w),

that is, the left-hand side of (0.4) with w =v/h.

Notice that 6, /h — —s0,, 8¢ in the sense of distributions; this leads to the formal-
ization in terms of incompatibility operators of Eshelby’s derivation [37] (see also [36])
of the edge dislocation a := sesd( as the disclination dipole 8, with vanishing length
h and Frank angles +s. The relationship between the dipole of disclinations and the
equivalent edge dislocation is clarified by noting that —sd,,d¢ = curla (see (1.16)
and (1.17) for the full details details). Therefore, from an energetic point of view, we
expect that the functionals Iz:‘a/ h converge, in a suitable sense, to the functional

11+v S
(0.5) 0.e(v):= 5 ; /QE (IVZ0)? — v(Av)?) dz + e o5 0) Op,v(x) dH ().
This is the content of Proposition 3.5, where we prove that the minima and minimizers
of the functional Igfs converge (as h — 0) to those of Z..

Since the loading term in (0.5) is an e-regularization of the core energy associated
with the edge dislocation se2dg, the length scale € can be interpreted as the core radius
of this edge dislocation. In other words, at scales larger than ¢, the material responds
to continuum theories of elasticity, whereas discrete descriptions are better suited at
scales smaller than e, thus establishing the semidiscrete nature of our model.

In Remark 3.7, we show that the same convergence carries through for a system of
isolated dipoles of disclinations, i.e., when 6, represents a finite system of disclination
dipoles (with length h) approximating a finite system of edge dislocations identified
by the corresponding a.

Finally, keeping « fixed, we discuss the asymptotic expansion of the e-regularized
dislocation energy Zg. as € — 0. By relying on an additive decomposition between
plastic (i.e., determined by the disclinations) and elastic parts of the Airy stress
function, in an analogous fashion to [18], we study the limit of the minimal 15, ase—
0 (Theorem 4.3), we compute the renormalized energy of the system (Theorem 4.6),
and we finally obtain the energetic equivalence, which is the sought-after counterpart
of Eshelby’s kinematic equivalence. Our asymptotic expansion of the minimal Zg _,
obtained via the Airy stress function formulation (see (4.42)), is in agreement with
[18, Theorem 5.1 and formula (5.2)] at all orders; therefore, as in [18], the minimizers
of I¢., as € = 0, converge to the sum of the Green’s functions associated with each
of the dislocation in « plus a smooth function matching the traction-free boundary
condition. To conclude, in Theorem 4.8, we combine in a cascade the convergence
results obtained above (sending first A — 0 and then € — 0), computing, via a diagonal
argument, the asymptotic expansion of the energy Iz,"s n for b < e(h) as h — 0.
This extends the asymptotic analysis in [18] to finite systems of dipoles of wedge
disclinations.

Outline of the paper and methods. The outline of the paper is as follows.
Section 1 is devoted to the presentation of the mechanical equilibrium equations, in
terms of both the laboratory variables and the Airy stress function of the system. Our
results are based on a crucial characterization of traction-free boundary displacements
for the problem formulated in terms of the Airy potential. Such a characterization
involves a nonstandard tangential boundary condition for the Hessian of the Airy
stress function which we are able to characterize in terms of classical Dirichlet-type
boundary conditions for the biharmonic equation (Proposition 1.10).
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In section 2, we study the mechanical problem for systems of isolated disclinations
formulated in terms of the Airy potential. With section 3, we begin our investigation
of systems of disclination dipoles, which we then conclude in section 4. Length scales
and mutual distances between disclinations are regarded as model parameters, of
which we study the asymptotics. We operate by directly computing the limits of
energy minima and minimizers; a more general approach via I'-convergence [16, 29]
is not explored in this paper. We stress that the results in section 4 are written for
finite systems of disclination dipoles and dislocations. In particular, Theorem 4.6 fully
characterizes the energy of a finite system of dislocations: the renormalized energy in
(4.44) contains information on the mutual interaction of the dislocations.

While our focus is on defects and kinematically incompatible systems, our sys-
tematization of the Airy stress function method is useful also for the general case
of compatible elasticity. We investigate a number of analytical questions, such as
the equivalence of boundary data in terms of the laboratory variables and the Airy
potential, fine Poincaré and trace inequalities in perforated domains, and density of
Airy potentials under nonstandard constraints. We gather these original results in a
series of appendices.

Notation. For d € {2,3}, m €N, and for every k € Z, let Z*(A;R™) denote the
space of k-regular R™-valued functions defined on an open set A C R¢ (we will consider
Sobolev spaces like H*(A;R™) or spaces of k-differentiable functions like C*(A;R™)
for k > 0). Now we introduce different curl operators and show relationships among
them. For d =3 and m =3 we define CURL: Z*(A;R?) = Z*1(A;R?) as

CURLV :=(0,,V? - 0,,V% 0.,V = 0,,V?*0,,V? - 0,,V!)

for any V = (VL V% V3) € Z%(A;R3), or, equivalently, (CURLV)" = &30, V¥,
where €;;5 is the Levi-Civita symbol.

For d = 3 and m = 3 x 3 we define CURL: Z*(A4;R3*3) — ZF~1(4;R3*3)
by (CURLM);; := €ipr0s, Mjj, for every M € #%(A;R3*3) and we notice that
(CURLM);; = (CURLM;)?, where M; denotes the jth row of M. Moreover, we
denote by INC: ZF(A;R3*3) — #*~2(A;R3*3) the operator defined by INC :=
CURLCURL = CURLoCURL. For d = 2 and m € {2,2 x 2}, we define the fol-
lowing curl operators: curl: Z%(4;R?) — Z*1(A;R) as curlv := 9,,V? — 9,,V?
for any V = (V1;V?) € #*(A;R?), Curl: ZF(A;R?*?) — 2+ 1(A;R?) as Curl M :=
(curl My;curl My) for any M € Z%(A;R?*2).

Now let A C R? be open. For every V = (V1;V?) € #*(A;R?), we can define
Ve Z*(AxR;R3) as V(xy;29;23) i= (VI (z1;72); V(715 22);0) and we have that

CURLYV = (0;0;curl V).
Analogously, if M € %% (A;R?*2), then, defining M : A x R — R3*3 by
M, (w15m0;3) = Myj(w1522)  if 4,5 € {1,2} and M,; =0 otherwise,
we have that M € #%(A x R;R3*3),

0 0 curlM; 0 0 0
CURLM=1|0 0 curlMsy |, CURLCURLM=1| 0 0 0
0 0 0 0 0 curlCurlM

In what follows, Rfyxn% is the set of the matrices M € R**? with M;; = Mj; for every

i,j =1,2. Furthermore, for every M € R?*? we denote by M T the matrix with entries
(M7);; = Mj; for every i,j=1,2.
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Finally, throughout the paper, the symbol C indicates a constant that may change
from line to line. Whenever we want to stress the dependence of C' from other con-
stants ¢1,...,ck or sets wi,...,wr, we adopt the notation C(ay,...,ax,wr,...,wr).

1. The mechanical model.

1.1. Plane strain elasticity. Let 2 be an open bounded simply connected
subset of R? with C? boundary. For any displacement u € H'(Q;R?) the associated
elastic strain e € L?(Q;R2%2) is given by € := V¥™y := 1(Vu + VTu), whereas the

sym

corresponding stress o € L?(Q; R2x2) is defined by
(1.1) o :=Ce:= Atr(e)laxa + 2pue;

here C is the isotropic elasticity tensor with Lamé constants A and p. Notice that
(1.2a) C is positive definite

if and only if

(1.2b) w>0 and A+pu>0,

or, equivalently,

1
(1.2¢) E>0 and 71<V<§.

Here and below, E is the Young modulus and v is the Poisson ratio, in terms of which
the Lamé constants A and p are expressed by

E Ev
1.3 =— d A=
(13) =50+ ™ 1+ v)(1—2v)
We will assume (1.2) throughout the paper.
In plane strain elasticity the isotropic elastic energy associated with the displace-
ment u in the body € is defined by

(1.4) E(u; N2) ::%/Qazedxzé/g()\(tr(e))2+2,u|e‘2) dz;

we notice that in formula (1.4) the energy £(+;2) depends only on € so that in the
following, with a little abuse of notation, we will denote by £(-;Q): L*(Q;RZ52) —
[0,400) the energy functional defined in (1.4), considered as a functional of e (and
not of u).

Notice that we can write the elastic energy also as a function of the stress o as

%1 ;V /Q (lo]* = v(tr(0))?) dz = (&),

where we have used (1.1) and (1.3) to deduce that

(1.5) F(o;Q):=

1+v 14+v
€11 = ((1—1/)011 —VUzz) , €12 = o12,
(1.6) 1+v
€22 =" ((1 — V)09 — 1/011) )
and
2 14+v
(1.7) A(ex(0)* + 2ulel® = 27 (2 ~ w(tr(0))?)
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Finally, we reformulate the energy (1.5) using the Airy stress function method. This
assumes the existence of a function v € H2(2) such that

2 2 2 ..
(18) 011 :806311, 0'12:—(93513521}, 022:895%@7

more precisely, we consider the operator A: %% () — %k_Q(Q;ngxlﬁ) such that o =
o[v] = A(v) is defined by (1.8). It is immediate to see that the operator A is not
injective, since A(v) = A(w) whenever v and w differ up to an affine function; its
invertibility under suitable boundary conditions will be discussed in subsection 1.3
(see Corollaries 1.5 and 1.9).

Assuming that there exists v such that o = o[v] = A(v), from (1.8), we can rewrite
(1.5) as

_11+V
T2 E

(1.9) Flo[]:Q) ) (\v%ﬁ —V\AUP) do =:G(v;9).

We notice that if the stress o admits an Airy potential v, i.e., 0 = o[v] = A(v), then
(1.10) Dive[v] =0,

that is, the equilibrium equation Divo = 0 is automatically satisfied. In fact, this is
the main advantage in using the Airy stress function method. Notice that the identity
in (1.10) is, at this stage, formal and in general holds in the distributional sense. As
we will see in subsection 1.3, in our case (1.10) will hold in H~1(;R?).

1.2. Kinematic incompatibility: Dislocations and disclinations. Let u €
C3(Q;R?) and set 3:= Vu. Clearly,
(1.11a) Curl3=0 in Q.

We can decompose § as 8 = e+ 55V, where € := %(ﬁ + A7) and pskew .= %(,B —B7).
By construction,
skew __ 0 f

for some function f € C?(2), and hence Curl 3¢V = V f. Therefore, the compatibility
condition (1.11a) can be rewritten as

(1.11b) Curle=—-Vf in Q,

which, applying again the curl operator, yields the Saint-Venant compatibility condi-
tion

(1.11c) curl Curle =0 in €.

Vice versa, given e € C*(;R2%Y), the Saint-Venant principle [86] states that if
(1.11c) holds, then there exists u € C3(2;R?) such that € = V¥,

In order to apply the direct method of the calculus of variations for the minimiza-
tion of the elastic energy (1.4), the natural functional setting for the displacement u
is the Sobolev space H!(;R?). Therefore, a natural question that arises is whether
identities (1.11) make sense also when 3 is just in L%(£2;R?*2). The answer to this

question is affirmative, as shown by the following result proved in [25] (see also [47]).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/15/24 to 130.192.232.226 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SEMIDISCRETE MODELING OF DISCLINATIONS 87

PROPOSITION 1.1. Let Q C R? be an open, bounded, and simply connected set,
and let € € L2(;R2X2). Then

sym
(1.12) curl Curle =0 in H2(9)

if and only if there exists u € H'(Q;R?) such that e = VY™ . Moreover, u is unique
up to rigid motions.

Notice that, by the Closed Graph Theorem, we have that (1.12) holds true in
H~=2(Q) if and only if it holds in the sense of distributions. Therefore, the generaliza-
tions of identities (1.11) when u € H*(£;R?) are given by

(1.13a) Curl3=0 in D'(Q;R?),
(1.13b) Curle=—-Vf in D'(O;R?),
(1.13¢) curl Curle =0 in D'(Q),

where f is a function in L?(£2) and the operator V should be understood in the sense
of distributions. (Here and below, D’(€;R?) and D’(Q2) denote the families of R2-
valued and R-valued distributions, respectively, on €2.) Clearly, if 8 is not a gradient,
then equations (1.13) are no longer satisfied. In particular, if the right-hand side of
(1.13a) is equal to some o € D'(Q;R?), then (1.13b) becomes

(1.14) Curle=a—-Vf in D'(Q;R?).

Moreover, if the right-hand side of (1.13b) is equal to —x, where x € H~(Q;R?) is
not a gradient, then (1.13¢) becomes

(1.15) curl Curle = —6 in D'(Q),

where we have set 6 := curl k. Finally, when both incompatibilities are present, we
have that

(1.16) curlCurle =curla — 0 in D'(Q).
We will focus on the case when « and 6 are finite sums of Dirac deltas. More precisely,
we will consider a € £2(Q2) and 0 € # 2(Q2), where

J
ED(Q) ;:{a:Zbﬂ'aﬂ s JEN, VY eR?\ {0}, 27 €Q, 27t # 272 forjl;éjg},

Jj=1

K
V279 ;:{9;2&@ : KeN, s"eR\ {0}, y" €Q, y* #y* for kﬁéz@}.
k=1

In this case (1.16) reads

J K
(1.17) curlCurle:—Z\bjW(ij 0 —Zskéyk in D'(Q),

j=1 1671 k=1

where we recall that b = (—bo; by ) for every b = (by;by) € R2. The measure « identifies
a system of J edge dislocations with Burgers vectors b’; the measure  identifies a
system of K wedge disclinations with Frank angles s*.

Remark 1.2. For the sake of simplicity we will assume that the weights &' and
s* of the singularities of a and 6 lie in R?\ {0} and R\ {0}, respectively. Actually,
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in the theory of perfect edge dislocations, we have that b € B C R2?, where B is
the slip system, i.e., the (discrete) set of the vectors of the crystallographic lattice.
Analogously, in the theory of perfect disclinations, s* € S, where, in a regular Bravais
lattice, S is given by the integer multiples of the minimal angle s between two adjacent
nearest-neighbor bonds of a given point (namely, s = 7 in the square lattice and
s==%7% in the regular triangular lattice). Whenever b are not vectors in B or s* are
not angles in S, the corresponding dislocations and disclinations are referred to as
partial; see [33, 76]. Since we will focus only on the regime of finite number of edge
dislocations and wedge disclinations, the classes B and S do not play any role in our

analysis.

Let « € £2(2) and 0 € # 2(Q). Following [32, 34], for every open set A C 2
with A N (spta U sptf) = @ we define the Frank angle wl_ A, the Burgers vector
bl A, and the total Burgers vector BL_ A restricted to A as

wlA:=6(4), bL A:=a(4), BI_A::bI_A—/(—xg;xl)dQ.
A

We notice that in [32, 34], the Frank angle is indeed a rotation vector QL A, which
in our plane elasticity setting is the vector perpendicular to the cross-section given by
QLA=(0;0;wlLA).

For the purpose of illustration, we notice that if sptd C Q\ A, then wL. A =0
and BLA =bL A = a(A). Now, if spta C Q\ A and 0 = sd, for some y € A,
then wl. A = 0(A) = s, bLA =0, and BLA = —s(—y2;%1). This illustrates the
different contributions of dislocations and disclinations to the quantities w, b, and B
just introduced: dislocations only contribute to the Burgers vector but never to the
Frank angle, whereas disclinations contribute both to the Frank angle and to the total
Burgers vector.

Finally, supposing for convenience that spta C Q\ A, if § = s(6y+ , — 0

% ) for
some y, h € R? with y = 2 € A, we have that

y=3

wlA=0 and BLA=—s(—hg;h1),

which shows that a dipole of opposite disclinations does not contribute to the Frank
angle but contributes to the total Burgers vector independently of its center y (see
section 3).

1.3. Disclinations in terms of the Airy stress function. In this subsection,
we rewrite the incompatibility condition in (1.16) in terms of the Airy stress function
v introduced in (1.8). To this purpose, assume that o = 0, so that (1.16) coincides
with (1.15). Here and henceforth we use the symbols n and ¢ to denote the external
unit normal and tangent vectors to the boundary of Q C R2, respectively, such that
t=n' = (—ng;ny); in this way, the ordered pair {n,t} is a right-handed orthonormal
basis of R2.

Consider v: @ — R and let 0 = o[v] = A(v) (see (1.8)) and e[v] = CLo[v] (see
(1.6)). Then, formally,

1—
(1.18a) curl Curle[v] = A%y,

T1T2 T1T2

(1.18b) Ce[vln=cfv)n= (65311711 — 0% vng;—02 . wny + Bzfvng) =V3ut.

As customary in mechanics, we refer to the zero-stress boundary condition Ce[v]n =0
on 0f) as traction-free. With some abuse of notation, we also name traction-free
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the same boundary condition measured in terms of the tangential component of the
Hessian of the Airy potential, that is, VZvt =0 on 0.

If € satisfies the equilibrium equations subject to the incompatibility constraint
(1.15) for some 6 € # Z(£2), namely,

curl Curle=—6 in Q,
(1.19) DivCe=0 in Q,
Cen=0 on 0f),
then, by (1.10) and (1.18), the Airy stress function v satisfies the system

1—v2

A2y=—0 inQ,
(1.20)

VZut=0 on 0N).

Recalling that (1.15) holds in the sense of distributions, the study of the regularity
of the fields € and ¢ in the laboratory setting and of the Airy stress function v must
be carried out carefully. The reason is the following: the measure of the elastic
incompatibility § € # 2(Q) is an element of the space H2((2), so that it is natural to
expect that €,0 € L*(Q;R2x2) and that v € H*(Q). At this level Cen|sq and Vv i|sq
make sense only as elements of H —3 (0Q;R?), so that the definition of the boundary
conditions in (1.19) and (1.20) cannot be intended in a pointwise sense, even when
the tangent and normal vectors are defined pointwise.

In Corollaries 1.5 and 1.9 below, we establish the equivalence of problems (1.19)
and (1.20) and show that, under suitable assumptions on the regularity of 02, the
boundary conditions hold in the sense of H 3 (09;R?). To this purpose, we introduce
the function v € HZ,_(R?) defined by

E |zf? 2
(1.21) o(r) = | T_v2 167 081210 270,
0 ifx=0

as the fundamental solution to the equation
1—v2

E
Given 0 = Ei;l Skﬁyk eWP(Q), for every k=1,..., K, we let

(1.22) A%y =6, inR2.

oP() = —sFo(- — )L

and define
K K
vP :=ka, oP = ap[vp]:A(vp)=ZA(vk),
k=1 k=1
=P =C 1ol [vP] =C to?,

(1.23)

which we are going to refer to as the plastic contributions. Notice that, by construc-
tion, v is smooth in R?\ spt# and hence on 92, and so are o and €P.
Recalling (1.21) and (1.22), we see that

1—v2

(1.24) A%0P=—0  inQ,
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so that if v solves the equation in (1.20) and we define the function v® through the
additive decomposition

(1.25) vi=vP +0°,

then v¢ satisfies

1-—12

A%0*=0 inQ,
(1.26)

Vet =—-V2Pt on 99.

Therefore, by (1.24), we can find a solution v to problem (1.20) if and only if we find
a solution to problem (1.26). Similarly, by (1.18a),

(1.27) curl Curle? = —0 in Q,

so that if € solves the equation in (1.19) and we define the field €® through the additive
decomposition

(1.28) e:=el +€°,

then we have curl Curle® =0 in Q and Ce®n = —CePn on 9. Therefore, by (1.27),
we find a solution € to problem (1.19) if and only if we find a solution to problem

curl Curle®* =0 in Q,
(1.29) DivCe® =0 in Q,
Ce*n=—-CePn on 092,

where we notice that the second equation above is automatically satisfied by (1.10)
in view of the fact that Dive? =0.

We refer to v¢ and €° as to the elastic contributions and notice that they are
compatible fields. Upon noticing that the function ¥ is smooth in R?\ {0} and by
requiring that the boundary 9 be smooth enough, we will see that problems (1.26)
and (1.29) are “equivalent” and that they admit solutions which are regular enough
for the boundary conditions to make sense in Hz (9Q; R2).

DEFINITION 1.3. Let Q C R? be a bounded, simply connected, open set. We say
that a function e € L*(Q;R2X2) (resp., € € L*(4R2%2)) is a weak solution to (1.19)
(resp., (1.29)) if the first equation is satisfied when tested with HZ(QY) functions and
the second one is satisfied when tested with H}(Q;R?) functions. Analogously, we say
that a function v € H?(;R?) is a weak solution to (1.20) (resp., (1.26)) if the first

equation holds when tested with HZ(Q) functions.

We start by proving the following result, which is one implication in the equiva-
lence of problems (1.29) and (1.26).

PROPOSITION 1.4. Let Q C R? be a bounded, simply connected, open set with
boundary of class C* and let § € W P(Q). Then there exists a unique weak solu-
tion (in the sense of Definition 1.3) €¢ € L?(Q;R2X2) to (1.29). Furthermore, €© €

sym
H?(;R2%2). Moreover, there exists a function v¢ € H*(Q) such that ¢ =C~*A(v°).

Finally, any function v¢ € H4(Q), with ¢ =C~1A(v®), is a weak solution to (1.26).
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Proof. Let
E(Q):={ec L*(4RYY) : curl Curle =0 in H*(Q; R**?)}

sym

and let G: E(2) — R be the functional defined by

G(e)::%/QCe:edx—i—/Qap:edx,

where o? is defined in (1.23). By construction, G is bounded from below in L?(Q; RZ*2)

and E(2) is a closed subspace of L?*(Q;R2%Y). Therefore, by applying the direct
method of calculus of variations, G admits a unique minimizer €° in E(2). Now we
show that (1.29) is the Euler-Lagrange equation for G. Indeed, for any n € E(Q2) we

have that
(1.30) /(CeeJrap) :ndr =0
Q

invoking Proposition 1.1 we have that n = V*¥™y for some u € H*(2;R?); therefore,
since Ce® + oP € R2X2 integrating by parts (1.30), we get

sym

0= / (Ce® +0oP): Vudr = —/ u - Div(Ce® + oP) dz —|—/ (Ce® 4 oP)n - udH',
Q Q a0
which, recalling that Dive? = 0 by the fundamental lemma of the calculus of vari-
ations, implies that €¢ satisfies (1.29). Moreover, by standard regularity results, we
have that e € H?(Q;R2%2). Now we can apply [24, Theorem 5.6-1(a)], and in particu-
lar the argument in [24, p. 397], which guarantees that a strain field ¢¢ € H™ (; ngxn% )
admits an Airy stress function v¢ = A=1(e¢) € H™+2(Q) for every m > 0. By applying
this result with m = 2, we obtain that v* € H*(2). Finally, by (1.18), we have that
any function v¢ € H*(Q) with ¢¢ = C71A(v®) is a weak solution to (1.26). 0

Since € and vP are smooth in a neighborhood of the boundary of 2, by (1.23)
and by Proposition 1.4, we immediately deduce the following result.

COROLLARY 1.5. Let Q C R? be a bounded, simply connected, open set with
boundary of class C*, and let 6 € # 2(). Then there exists a unique weak solution
(in the sense of Definition 1.3) e € L*(Q;R2x2) to (1.19). Furthermore, Ce®n €
H2 (0 R?). Moreover, there exists a function v € H2(Q) such that e = C™1A(v).
Finally, v is a weak solution to (1.26) and V2vt € H?2(0Q;R?).

In order to prove the converse implication of Proposition 1.4, we state the fol-
lowing result, which is an immediate consequence of [45, Theorem 2.20] (applied with
k=4, m=n=p=2, and with f=0 and h; € C™).

LEMMA 1.6. Let A C R? be a bounded open set with boundary of class C*, and
let g be a C* function in a neighborhood of OA. Then there exists a unique weak
solution w € H?(A) to

1—v2

T A2w=0 inA,
(1.31) w=g on 0A,
Opw = Opg on OA.

Moreover, w € H*(A).

By Lemma 1.6 and Proposition A.2 below, we have the following result.
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COROLLARY 1.7. Let A C R? be a bounded open set with boundary of class C*, and
let f be a C* function in a neighborhood of A . Let T, T, ... . T'L be the connected
components of 0A. Given a®,a',... a" affine functions, there exists a unique weak

solution w € H*(A) to the problem
1—v?

E
(1.32) w=f+d on T,

A%w=0 n A,

3nw:8"(f+al) on T,

moreover, w € H*(A) and satisfies

1— 2
- 0 inA,
(1.33)
V2wt=V?ft on0A.
Vice versa, if w € H*(A) is a solution to (1.33), then there exist a®,a’,...,a" affine

functions such that w satisfies (1.32).

Proof. By Lemma 1.6, applied with ¢ := f + a' on I'!, we have that there exists
a unique weak solution w € H?(A) to (1.32) and that w € H*(A). By the Rellich—
Kondrakov Theorem, we have that w € C?(A); therefore w — f is of class C? in a
neighborhood of 4. We can now apply Proposition A.2 to deduce that V2wt = V2ft
on A, thus obtaining that w € H*(A) is a solution to (1.33).

Vice versa, if w € H*(A) is a solution to (1.33), then, by using Proposition A.2
again, we obtain that there exist a®,a’,... a” affine functions such that w solves

(1.32). 0

PROPOSITION 1.8. Let Q C R? be a bounded, simply connected, open set with
boundary of class C*, and let 0 € # 2(Q). Then there exists a weak solution v¢ €
H*(Q) to (1.26). Furthermore, any weak solution v¢ to (1.26) belongs to H*(Q) and
the function ¢ = C~1A(v®) is the unique weak solution to (1.29).

Proof. By applying Corollary 1.7 with f = —vP (with vP defined as in (1.23))
and A = Q, we immediately have that there exists a weak solution w € H*(Q2) to
(1.26). Moreover, by (1.18), we have that for any weak solution v¢ € H?(Q) to (1.26),
the function €¢ = C7tA(v®) € L3(;R2%2) is a weak solution to (1.29). Owing to

Ssym
Proposition 1.4, the solution € to (1.29) is unique and belongs to H*(Q). It follows
that any weak solution v® to (1.26) is actually in H*(Q). d

COROLLARY 1.9. Let Q C R? be a bounded, simply connected, open set with
boundary of class C*, and let 0 € W 2(Y). Then there exists a weak solution v € H?(Q)
to (1.20) and the condition V2vt =0 on OQ holds in H2 (0S4 R2). Furthermore, for
any weak solution v to (1.19), the function e = C™*A(v) is the unique weak solution

to (1.19).

Finally, by arguing as in the proof of Proposition 1.8 and using the additive decom-
position in (1.25), one can easily prove the following result.

PROPOSITION 1.10. Let A C R? be a bounded open set with boundary of class C*.
Let 0 € W P(A) and let v € H?(A) be such that

1—v2

) A%y=—0 n A.

(1.34)
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Then denoting by IO T, ... . T'L the connected components of DA, we have that

(1.35)
V3ut=0 ondAd < wv=d, d,w=0,a onT' foreveryl=0,1,... L,
where a®,a’,...,a" are affine functions.

Remark 1.11. We highlight that, since €2 is simply connected, the solution to
(1.26) is unique up to an affine function. Indeed, given two solutions v® and ¥¢ of
(1.26), the function w :=v® — §° satisfies

1— 1?2

E
Viwt=0 on 0f).

A2w=0 inQ,

Moreover, by Proposition 1.10, such w is affine. Therefore, the function v¢ satisfying
(1.26) is uniquely determined up to affine functions. Analogously, the function v
satisfying (1.20) is uniquely determined up to affine functions.

2. Finite systems of isolated disclinations. We now study the equilibrium
problem for a finite family of isolated disclinations in a body 2. The natural idea
would be to consider the minimum problem for the elastic energy G defined in (1.9)
under the incompatibility constraint (1.20), associated with a measure § € # 2(Q);
however, this is inconsistent, since one can easily verify that the Euler—Lagrange
equation for G is A%2v =0.

To overcome this inconsistency, we define a suitable functional which embeds the
presence of the disclinations and whose Euler-Lagrange equation is given by (1.20).
To this purpose, let @ C R? be a bounded, open, and simply connected set with
boundary of class C*; for every 6 € # 2(Q) let Z°: H?(Q) — R be the functional
defined by

(2.1) T%(v;Q) :==G(v; Q) + (0,v),
and consider the minimum problem
(2.2) min {Z%(v; Q) :v e H3(Q), V2vt =0 on 9Q}.

A simple calculation shows that the Euler-Lagrange equation for the functional (2.1),
with respect to variations in HZ((2), is given by (1.20). By Proposition 1.10, we
deduce that the minimum problem in (2.2) is equivalent, up to an affine function, to
the minimum problem

(2.3) min{Z%(v;Q) : v € H3(Q)}.

LEMMA 2.1. For every 6 € W 2(Q), the functional I(-;Q) is strictly convex in
H?(Q) and it is bounded below and coercive in HZ(S). As a consequence, the minimum
problem (2.3) has a unique solution.

Proof. We start by proving that Z?(+; ) is bounded below and coercive in H2(2).
To this purpose, we first notice that there exists a constant C; = C1(v, E,2) > 0 such
that for every v € HZ(Q)

2
24) w0z

min{l - 21/, 1}||V2v\|%2(Q;szz) > Cl||'l)||§{2(ﬂ) 5
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where in the last passage we have used Friedrichs’s inequality in HZ(2). Notice that
the positivity of Cy is a consequence of (1.2c).

Now, using that HZ () embeds into C°(Q), we have that there exists a constant
Co = C3(0,) > 0 such that for every v € HZ()

K
(2.5) O,0)=>_ sto(a?) > =Callvl| (e -
k=1

By (2.4) and (2.5), we get that for every v € H3 ()

2
(26) (639 2 Calo ) — Callolioy =~
which implies boundedness below and coercivity of Z%(-;Q) in HZ(Q).

Now we show that G(-;) is strictly convex in H?(f2), which, together with the
linearity of the map v ~— (,v), implies the strict convexity of Z?(-;) in H%(2). To
this purpose, let v,w € H2(2) with v # w and let A € (0,1); then a simple computation
shows that

G+ (1 =Nw; Q) =AG(1; Q)+ (1 = N)G(w; Q) — A(1 — NG (v —w; Q)

(2.7) <AG(0;2) + (1 = NG (w; ),

which is the strict convexity condition.
By the direct method of the calculus of variations, problem (2.3) has a unique
solution. O

Remark 2.2. We highlight that inequality (2.6) shows that Z%(-;Q) could be
negative. In particular, G being nonnegative, the sign of Z? is determined by the
value of the linear contribution (6, v). It follows that the minimum problem (2.2) and
hence (2.3) are nontrivial and, as we will see later (see, e.g., (2.11)), the minimum of
7%(:;Q) is indeed negative.

Remark 2.3. Notice that the functional Gz (-;Q) defines a seminorm on H2(Q)
and a norm in HZ (), since G(v; Q) = (v,v)g,, where the product (-,-)g,, defined by

_11—|—V
2 E g

(2.8) (v,w)gg : (V?0: V?w — vAvAw) dz,

is a bilinear, symmetric, and positive semidefinite form in H?(Q) and positive definite
in H2(€2). We remark that in H2(Q) the norm G2 (-;Q) is equivalent to the standard
norm || - || z2(q)-

In the following lemma, for any given ¢ € R? and R > 0, we compute the minimal
value of Z%(-; Br(€)) associated with a single disclination located at ¢, corresponding
to 8 = sd¢ for some s € R\ {0}. The explicit computation is straightforward and is
omitted.

LEMMA 2.4. Let s € R\ {0}, £ € R?, and R > 0. The function vg: Br(§) —» R
defined by
E R?—|z—¢?(1 +log R?)
1—v2 167

o (o) g (D),

vr(z):=—sv(x — &) —s
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with v as in (1.21), belongs to H*(Br(£))NC>(Bgr(&) \ {¢}) and solves

1— 12

(2.9) A*v=—sd; in Bg(€),

v=0,v=0 on OBR(§) .

Hence vg is the only minimizer of problem (2.3) for Q= Bgr(§) and § =sds . More-
over,

E  $2R? E $R?
2.1 ;B = 1.2
(2.10) GrBrO) =1 555,  ond  (80cvr)=—1— 5376
so that
(2 11) min 1555(,0.3 (5))_1'85&(@ -B (5))__L82R2
' veH2(BR(£)) ST R T EPZ

In view of (1.5) and (1.9), the first equality in (2.10) is the stored elastic energy of
a single disclination located at the center of the ball Br(§). Observe that, according to
the formulation of the mechanical equilibrium problem in the Airy variable (2.9), the
contribution of the linear term in the second equality in (2.10) adds to the total energy
functional of the system, but does not correspond to an energy of elastic nature.

3. Dipole of disclinations. In (2.10) we have seen that an isolated disclination
in the center of a ball of radius R carries an elastic energy of the order R?. Here we
show that the situation dramatically changes when considering a dipole of disclinations
with opposite signs; indeed, when the distance between the disclinations vanishes, a
dipole of disclinations behaves like an edge dislocation, and its elastic energy is actually
of the order log R.

3.1. Dipole of disclinations in a ball. For every h >0 let

h
(3.1) yhE =+5(1;0)

and let 7, : R? = R be the function defined by

(3.2) Up(z) i=—s5 (0 (x—yh’+) —E(x—yh’_)) ,

where ¥ is given in (1.21). By construction, v, Br(0) € H2(Br(0)) and
(3.3) A0, =—6,  inR?,

where we have set

(3.4) On :=5(8yn+ —Gyn—).

We start by proving that the H? norm of ¥, in an annulus A, (0) := Br(0) \ B,(0)
with fixed radii 0 <7 < R vanishes as h — 0.

LEMMA 3.1. For every 0 <r < R there exists a constant C(r, R) such that

N
(3.5) }1113}) ﬁ||vh“%l2(AnR(0)) =C(r,R)s*.
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Proof. By straightforward computations, for every = € Ay r(0) we have that

2
. E_ s 2, MY, (11 =5) +a3
vh(x)——l_y216ﬂ_<<|x| +4> log h

mﬁbg<<gn§)2+@>((x1;§)2+ﬁ>>);

B (01— 8 + a3
ax2vh(x) _1 ) F2 210g (:Cl N %)2 +x%»
(3.6) 0 _ E s (z1—%)2+x§
aw%vh(x) “1—216n 2log PR
371"’5) +l’2
2 2
(13 )|
2 2 ;
(xl—%) + x2 ($1+%) + x2
E — By 43
Gigﬁh(:r)*fl_ 21;(21 (1 2)2 xi
vean (w1 +3)" +23

Moreover,

(3.7)
@8 el 2w
o8 nZ, oo 08 Y24 2 )]
(z1+ %) +a3 (z1+5)" +23
(z1—8)? (z1+4) _ —2x3x1h
(0 -8 +a3 (8 423 ((@-2) +a3) (@0 +5)° +a3)

1 1 B 22321 h
Lo _h 2 2 - h 2 2 - _h 2 2 h 2 2 ’
(x1— %) +23 (214 2)" +a3 (x1—2)" +23)((z1 4+ 2)" + 23
x4 nth (2> + 5)h
(r1— 8’423 (w1 +2) +a2 ((xl —g)2+x§) ((x1+%)2+x§)

Finally, we set

o (o) s 2 2
' (x):= ms—ﬂ(m log|x|* +21) for every z € R*\ {0},
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and we observe that ¥’ € C°°(R?\ {0}). By (3.6) and (3.7), it is easy to check that
h=1o, (resp., h_lﬁwjﬁh for j = 1,2, and h=19% , ©), for j, k = 1,2) converges to v’

TjT

(resp., 0y,v" for j=1,2, and 851,“17’ for j,k=1,2) uniformly in A, g(0) as h—0. In
particular, h72H5h”§{2(AT,R(0)) — H@’H%IQ(ATYR(O)) =:C(r,R)s%, i.e., (3.5). O

The next lemma is devoted to the asymptotic behavior of the elastic energy of vy,
as h — 0. Its proof is contained in Appendix B.

LEMMA 3.2. For every R>0

1 E s

(3.8) s mg(vh;BR(O)): T-23:"

The next proposition shows that the same behavior in (3.8) persists when replac-
ing v;, with the minimizer vy, of Z% (-; Bg(0)) in HZ(Bg(0)) for 0), given by (3.4).

PROPOSITION 3.3. For every 0 < h < R, let vy, be the minimizer of % (-; Br(0))
in HZ(Bgr(0)). Then

(3.9) m G Ba(0) = 2 S
. im ———— ; =——
ns0 h2[logh| R 11287
and
E  s?
3.10 lim ——— 7% (v;,: BR(0)) = — -
(3.10) o e ogn L vni BrO) = =755

Proof. We start by noticing that, for every 0 < h < R, the minimizer vy of
7% (; Br(0)) in HZ(Bg(0)) is unique by Lemma 2.1. Let wy, € H?(Bg(0)) be defined
by the formula wy, := v, — v, L Bg(0), where v}, is defined in (3.2). Then, by (3.3), we
have that wjy, is the unique solution to

A%w=0 in Bgr(0),
(3.11) w=—7Tp on 0Bg(0),
Opw = —0,7, on 8BR(()) .
By [45, Theorem 2.16], we have that there exists a constant C' = C(R) > 0 such that

(3.12) lwnll 2 (Br(0)) < Cllonl| ) S Cllonllzzcarn)

H3 (9BR(0)

where 0 <7 < R is fixed.
By (3.12) and Lemma 3.1 for & small enough we get

(3.13) ”wh”?'-IZ(BR(O)) < CHﬁhH%ﬂ(AhR(o)) <C(r, R)52h2 )
which, together with Lemma 3.2, recalling the definition of (-;-) in (2.8), yields

9BR(0)

: . 1 - . 1 ,
AIL% mg(vha BR(O)) - fllli% mg(vha BR(O)) + }lll_r% mg(wm BR(O))

491 1 (@ > E s
1m ——- N =
® 50 12 log 7t I Ge 0 T T2 g

i.e., (3.9). Finally, since

2
S
(On;vn) = (On,0n) + (On, wn) = — Ehﬂ log h| + wn (y" ) — wa(y™ ™),

1—v2
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and using Morrey inequality and (3.13) to deduce that

lwp (y™*)| < C(R)|lwnllz2(BR(0)) < C(r, R)sh,

we get
1 E s sC(r,R) E 2
lim ———— (O, p) = ———— 2 4 1; ) _ L
hlg%hzlog%< h V) = =7 g i [log 7] 1—124r’
which, added to (3.9), yields (3.10). O

3.2. Core-radius approach for a dipole of disclinations. We discuss the
convergence of a wedge disclination dipole to a planar edge dislocation. We recall that
the kinematic equivalence of a dipole of wedge disclinations with an edge dislocation
was first pointed out in [37] with a geometric construction in a continuum (see [98]
for a construction on the hexagonal lattice).

Let s >0, R >0, h € (0,R), and let 0, := 56(%;0) — 55(7%;0). Moreover, let
v, € H?(BRr(0)) satisfy
(3.14) {AQ’U;LZ—Q}L in BR(O)7

v =0pvp, =0 on OBR(0).

Then, since % — —80;,00 as h — 0, we expect that, formally, 4+ — v, where v
satisfies

(3.15) {sz = 50,80 in Br(0),

v=0,v=0 on 0BR(0),

namely, v is the Airy function associated with the elastic stress field of an edge dislo-
cation centered at the origin and with Burgers vector b= ses; see (1.17). Notice that
the resulting Burgers vector is orthogonal to the direction of the disclination dipole d
(directed from the negative to the positive angle), more precisely we can write % = %
(see [37] and also [36, formula (7.17)] and [99, formula (7)]).

The convergence of the right-hand side of (3.14) to the right-hand side of (3.15)
represents the kinematic equivalence between an edge dislocation and a wedge discli-
nation dipole, obtained in the limit as the dipole distance h tends to zero. We now
focus our attention on the investigation of the energetic equivalence of these defects,
which we pursue by analyzing rigorously the convergence of the solutions of (3.14) to
those of (3.15).

As this analysis entails singular energies, we introduce regularized functionals
parameterized by 0 < e < R, representing the core radius. To this purpose, we define

(3.16) B g ={we H(Br(0)) :w=a in B.(0) for some affine function a}
and, recalling (2.1), we introduce, for h < ¢, the functional Igf‘sz PB- r — R defined by

" (v) :=G(v; Br(0))
(3.17) s ) . 1
T ome—ny /aBH(O) {“(m * 561) - “(@“ - 261)] dM (),

associated with the pair 6, of disclinations of opposite angles +s placed at i(%, 0), re-
spectively. We identify the relevant rescaling for the Airy stress function v, parametrized
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by the dipole distance h, and corresponding to the energy regime of interest. We stress
that the energy scalings are dictated by the scaling of v and not from a priori assump-
tions. Consequently, we assume v = hw (with w=0(1)) and write

Iy (hw) = G(hw; Br(0))
(3.18) s 1
T ore—n) /aBE,L«n {hw (=+ gel) oz - 361)} dH ().

It follows that the regularized energy of a disclination dipole of angles +s is of order
O(h?). In order to isolate the first nonzero contribution in the limit as A — 0, we
divide (3.18) by h? and, in view of the homogeneity of degree 2 of the elastic term,
we get

1
/" (w) = 35T (hw) = G w: Br(0))
(319) by [ e g
2m(e = h) Jop._, (0 h |

Setting « := sexdg, we show that the minimizers of Isfbs/h in %, r converge, as h — 0,
to the minimizers in %. g of the functional 7§, : % r — R defined by

(3.20) I8 (w) = g(w;BR(O)Hi/ By w dH .
’ 2me JaB. (0)

Notice that, by the very definition of %,  in (3.16),

(3.21) Igs(w):g(w;AE,R(O)Hi/ OpywdH*.
’ 2me B (0)

We start by showing existence and uniqueness of the minimizers of Iz"a/ " and Ig.
in @E’R.

LEMMA 3.4. Let s € R\ {0}, 0 := 56 (n.g) — 55(_?0)], and o := sexdg. For every
0 < h < e < R there exists a unique minimizer of Ihhe/ " in B. . Moreover, there
exists a unique minimizer of I in PBe Rr.

Proof. The proof relies on the direct method in the calculus of variations. We
preliminarily notice that the uniqueness of the minimizers follows by the strict con-
vexity (see (2.7)) of Iz?'g/h, for h > 0, and of Zg,, for h = 0. For every h > 0, let

{Wh.e,j}jen be a minimizing sequence for I;’;’Le/h in B, p and let {Wy . ;}jen be a
minimizing sequence for Z§', in %, r. We first discuss the case h > 0. Since W, ¢ ; is
affine in B.(0) for any j € N, for any x € 9B._;,(0) we have that

4+ Rey) — (-4
Wh,s,j ($ + 261) ; Wh’s’J (I 261) = |ax1Wh,6,j(x)|

(3.22) <02, Whe | L= (8. (0))

1
< 7= Wh.eill22(Br0)) -
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Hence, since the zero function w =0 belongs to 4. g, by using Friedrich’s inequality
in HZ(Bg(0)), we get, for j large enough,

On/h On/h
OZIhfe/ (0)>Ih’5/ (Wh7s7j)

11—
> -
-2

v
min{1 — 20, VWi, e 51725 0ymex2)

(3.23) s
- ﬁIIWh,a,jIIH%BR(o»

S
> CWhe jllFr2(5r0)) — ﬁHWh,e,me(B}a(o))

for some constant C' > 0 depending only on R (other than on E and v). By (3.23),
we deduce that ”Wh’EJH%I?(BR(O)) is uniformly bounded. It follows that, up to a
subsequence, Wy, . ; — Wy (as j — oo) in H?(Bgr(0)) for some function Whe €
HZ(Bgr(0)) that is affine in B.(0). By the lower semicontinuity of I / with respect
to the weak HZ2-convergence, we get that Wj < Is a minimizer of I "E/ " in B R
Analogously, since the last inequality in (3.22) holds true also for h = 0 by arguing
as above we have that, up to a subsequence, Wy . ; — Wy . (as j — o0) in H?(Bg(0)),
where Wy . is the unique minimizer of Z§, in % g. 0

We are now in a position to prove the convergence of the minimizers and of the
. On/h
minimal values of Ihh'g/ to Z¢'. as h— 0.

PROPOSITION 3.5. Let s € R\ {0}. Let 0 < e < R and, for every 0 < h < ¢,
let Weh/h be the minimizer of Izhs/h in Ber. Then, as h — 0, Wgh/h — Wge
strongly in H*(Bg(0)), where W' is the minimizer of I¢. in %E’R Moreover,

On/h 11700/ h o
T W) = Tg (WEL) as h—0.

Proof. For every 0 < h < & let ap () := Che0 + Chea1®1 + Che2Z2 With cpe0,
Che1, and let cp 2 € R be such that Wghg/h = ap. in B.(0). Then, arguing as in
(3.23), we get

S On/h
N AL FEEROY

0> Iah/h (ng;/h> > CHW}f,hs/hH?{z(BR(O)) -
Therefore, up to a (not relabeled) subsequence, We’l/ LN W§'. in H*(Bg(0)) for some
W¢'. € H3 (Br(0)). Moreover, since the functions Wh "/ are affine in B. (0), also W',
is, and hence there exist ¢y c,0,C0,¢,1,C0,c,2 € R such that WO (x)=coe0+coe1z1+
Co,e,222 for every x € B-(0). It follows that W', € %. g.
Now, since Wh"/h — W', in H'(Bg(0)), we get that cj . ; — cocj as h— 0 for
every j=1,2,3, which 1mphes in particular, that

o Wtl" (@ 4+ Ser) =W/ (= her)
lim ——— )
h—027m(e —h) Jop._,(0) h
1 _
3.24 =i - - 00, W dH!
( ) h1_>n1och,a,1 Co,e,1 2me 9B.(0) Lo #
e 1 Weee (e + 5e) =Wge (w=5e1) s
=lim ——— @
h—02m(e —h) Joap. (0 4
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Analogously,

a h a h
i iy [, A
h—02m(e —h) Joap._,(0) h

1
- D, WE_dH.

2me 8B (0) e *

(3.25)

By (3.24) and (3.25), using the lower semicontinuity of G, and taking [Wg'.] as a
competitor for Izhe/h in %, r, we get

- . erOn/h On/h . On/h
Tg. (Wg.) < To. (W) Stiminf 20/ (W/") < Jim T/ (W) = T8 (W),
so that all the inequalities above are in fact equalities. In particular,
I Ny S A
(326> [()X,E(W(S)fs) - ]}L%Ihfs (Wh,hs )
and consequently VT/&E is a minimizer of Z§’, in % r. In view of Lemma 3.4,

we deduce that W', = W, which, together with (3.24) and (3.26), implies that
Q(Wg’h’s/h;BR(O)) — G(W¢'e; Br(0)) as h — 0. In view of Remark 2.3, this implies

that Wg’;/h — Wg'. strongly in H?(Bgr(0)) as h — 0. Finally, by the Urysohn prop-
erty, we get that the whole family {W,ffs/ h}h converges to W', as h — 0. 0

We conclude this section by determining the minimizer W', of Z§, in % g, for
o = sexdg.

LEMMA 3.6. Let s € R\{0} . For every0 <e < R the function Wosff‘so :Br(0) =R
defined by

(3.27)

s E 1 2 2 ;

T (e + e el + 2og )z if @€ A (0),

Wose;(;o(m) — S']T _LCV ﬁ |-’17|

Tor T g7 (0 * 5+t + dloge)n FweB:0),
with

R2—€2 2 2 R2 2
(3:28)  er=Ppe g 2ol B= e e e T

is the unique minimizer in B. r of the functional IS:?&O defined in (3.20). Moreover,

2 2 2
sesd se2dp\ __ S E R R —¢
(3.29) 1y O(Wo,s2 )= ] (1036 T R24e2)

The proof of Lemma 3.6 is postponed to Appendix C, where we also state Corol-
lary C.1, which will be used in section 4.

Remark 3.7. Let be R?*\ {0} and let II(b) denote the 5 clockwise rotation of the
vector b, i.e.,

(3.30) (b) = —b*.
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For any 0 < h < e < R, for 0y, :== |[b|d ,nw) — 0|0, uwm, in analogy with (3.17) and
2 1] 2 b

(3.19), we can define the functional IZ?E/}L: Be.r — R (for this choice of ;) as

7;/" (w) := G (w; B(0))

(NI

o] / w (x ML o] ) )
+ dH (x).
271'(5 — h) 8B._1(0) h ( )

Notice that for b directed along the positive z-axis, the previous formula (3.19) agrees.
By arguing verbatim as in the proof of Proposition 3.5, we have that, as h — 0, the
unique minimizer of I,QL’LE/ " in B. r converges strongly in H?(Br(0)) to the unique

M>_w<x_%w

minimizer in %, g of the functional Igi“ defined by

! / (Y, TI(B)) dH |
9B.(0)

(3:31) T (w) :=G(w; Br(0)) + 5 —

Notice that the minimizer of 18550 is given by

(3.32) W (z) := Wyile00 (<H|I()l|))x> , <|Z|a:>> ,

where the function W(ie;‘so is defined as in Lemma 3.6.

Furthermore, one can easily check that the same proof of Proposition 3.5 applies
also to general domains ) as well as to a general distribution of dipoles of wedge
disclinations

J
(3.33) On ::Z|bj| <5m.1+’;“(b.j> _(ij_hﬂﬂ”')) eV o),
j=1

[67] 2 [bd]

(with ' € R*\ {0} and miny, j,—1, ;|27 — 27|, minj—y . s dist(z7,9Q) > 2¢) approx-

J1#J2
imating the family of edge dislocations o := Z;’Zl b6, € £2(). In such a case, by
arguing as in the proof of Proposition 3.5, one can show that, as h — 0, the unique
minimizer wzhs/ " of the functional

(3.34)
7" (w) == G (w; Q)

in the set
Blo={we HZ(Q):w=a’ in B.(27)

(3.35) . o
for some affine functions o’ , j=1,...,J}

converges strongly in H*(Q) to the unique minimizer w§ . in %2, of the functional

J
Iy (w) == G(w; Q) +ZT71TE/33 ( ,v)<Vw,H(bj)>d7-[1
(3.36) =
=G+ Y g [ (wnw) .
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4. Limits for dislocations. In this section, we obtain the full asymptotic ex-
pansion in ¢ of the singular limit functional Z¢', introduced in (3.36). We first prove
the convergence of the minimizers of Z§, in a suitable functional setting (see The-
orem 4.3) and then, by showing that all terms of the expansion coincide with the
corresponding terms of the renormalized energy of edge dislocations of [18], we finally
deduce the asymptotic energetic equivalence of systems of disclination dipoles with
the corresponding systems of edge dislocations.

Let a= Z;}:l b8, € £2(Q). We consider the following minimum problem:

(4.1) wéﬂég 72 (w),

where Z2(w) := I (w) is the functional defined in (3.36) and %, is defined in
(3.35). In order to study the asymptotic behavior of the minimizers and minima of
I as € =0, we first introduce some notation.

Fix R > 0 such that Q C Bg(z7) for every j=1,...,.J, and let £ > 0 be such that
the (closed) balls B.(z7) are pairwise disjoint and contained in Q, i.e.,

(4.2) e<D:= gnn p { 1d15t1¢] (2%, 27) , dist (27, 69)}

We define the function W2: Q.(a) = R by
(4.3) Wo(2):=> Wix), with WI() =Wy (—a)

(see (3.32)). We highlight that the function W depends also on R through the
constants defined in (3.28). Notice that any function w € #¢'(, can be decomposed as
(4.4) w=W&+w,
where w € %’ s With

Bo={we H}Q) — W@+ W =a in B.(ad)

(4.5) for some affine functions @’ , j=1,...,J}

Therefore, in view of the decomposition (4.4), for every w € %2 ' we have

<

1 . ~
4.6 I¥(w)=G )+ / (VW2 TI(V)) dH + I (W),
(4.6) (w) =G(W, Zm b (o) (")) (w)
where
7o (@) = G Q. 1*”2/ (VW2 V25— v AW A da
2. (a)
(4.7)

7o
Z—/ (Va, (b)) dH .
— 27¢ Jop. (xi)

Notice that the integration for the bulk term G above is performed on €. (a) and not
on €, as the function w is not, in general, affine in szl Be(z7).
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In view of (4.6), as in [18, Theorem 4.1], the minimum problem (4.1) (for w) is
equivalent to the minimum problem (for w)

(4.8) min Ia( w) .

we%a a

LEMMA 4.1. For every w € %?Q we have

1+v J )
(— (1— V)/ (0 AW )i dH?
E 90

Jj=1

I(@) = G(; Qe (o) +

+/ (V2Win,Vao)dH' —v Awganmdw)
dQ

o0

(4.9) + Z (1 v Z ( (1-v) /aBE(zi)(@nAwg)@d”Hl

=1

- / (V2Win, V) dH' +v / Awgan@dH1>
OB (%)

OB (z%)
1

2me OB, (x7)

(V@,H(N))d?-[l) .

Proof Let w € %’“Q be fixed. By the Gauss—Green Theorem, for every j =
.,J and for every 0 <e < D, we have

/ V2WI V2 de = —/ (8, AWY) wd%1+2/ (8, AW ) dH?
Qe (@)

(4.10) + / (V2Win, V) dH*
c’)Q

- Z/ (V2Win, V) dH!
OB (x?)

and

/ AWI Aw dz = —/ (8, AW wd?—ll—i—Z/ (0, AW )i dH?

+ | AWId,wdH — Z/ AW? 9, wdH!,
N B, (z?)

where we have used that A?2W7 =0 in Q.(«) for every j =1,...,J. By (4.10) and
(4.11) it follows that

/ (V2WZ: V20— vAWI AT da
Qe (a)
—(1- 1/)/ (O AW )w dH? +/ (V*Win, VaydH' —v [ AWI0,wdH*
on oN

oN
(1-v) Z/ (0, AW )W dH*

OB, (x?)
- Z/ (V*Win, Vi) dH" + VZ/ AW/, wdH"
OBc(z*) 9B, (x?)
which, in view of the very definition of IEO‘ in (4.7), implies (4.9). d
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Remark 4.2. Let o = Z b8, € £D(Q). For every 0 <r < R and for every
j=1,...,J we have that the plastic functions W7 converge in C*®(A, g(27)), as
e—0, to the function VVg defined by

' V| FE ||? I(v7) .
112) W)= ~Jog R?) — 2L 2 ) i)
(4.12) 0(@) =573 ((1 log R®) — 5 +logla] TR

It follows that W — Z | Wi = Wg in 0=(Q,(a)) and hence in HZ_ (Q\Uj:l{xﬂ})
Therefore, in the spirit of (4. 5) we set

(4.13) B o ={we H} Q) : w=-W, d,w=—0,W§ on 9Q}.

Now we prove the following theorem, which is the equivalent of [18, Theorem 4.1]
in terms of the Airy stress function.

THEOREM 4.3. Let o= Z}'le b8, € ED(Q) and let I be the functional in (4.6)
for every e >0. For e >0 small enough the minimum problem (4.1) admits a unique
solution we. Moreover, w® — w§, as € — 0, strongly in HZ (2 U _{27}), where

w§ € 1OC(Q \U; _1{903}) is the unique distributional solution to

1
b 8 J L(Smj ) Q,
(4.14) Z' | G "

w=0,w=0 on 0F) .
Theorem 4.3 is a consequence of Propositions 4.4 and 4.5 below, which are the
analogue of [18, Lemma 4.2] and [18, Lemma 4.3], respectively.

PROPOSITION 4.4. Let a € £9(Q) and let € > 0 be small enough. For every
we %’"Q we have

(4.15)
Ot (111320 oy = 1] 122,01 1) SZE@) < Co (10132 gy + 10 1202, +1)

for some constants 0 < Cy < Cy independent of €. Moreover, problem (4.8) admits a
unique solution WS € %’ ‘o and Hw | 520, (o)) @8 uniformly bounded with respect to e.

Furthermore, there exists wg € %&Q such that, as € = 0 and up to a (not relabeled)
subsequence,

(4.16) @ —w§  weakly in H*().

PROPOSITION 4.5. Let a = Z'I Vo, € ED(Q) and let e > 0 be small enough.
Let we and wO be as in Proposztzon 4.4. Then, as € — 0, the whole sequence w<
converges to wg, stmngly in HZ . (Q\U {2 }), and wg is the unique minimizer in

0 q of the functional Ia defined by

J

I8(0) == G(w;

( 1_y/ (B, AW )W dH?
1219}

+/ (V2Win, Vo) dH —v Awgan@dHl).
o0

o0
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Moreover,

(4.17) A*wy =0  inQ

and

(4.18) Io(0%) = I8 (@) ase—0.

Proof of Theorem 4.3. By the additive decomposition in (4.4) and by Proposition
4.4, we have that, for £ > 0 small enough, w® = W& +ws,, where W2 is defined in (4.3)
and w is the unique solution to the minimum problem in (4.8). Therefore, by Remark
4.2 and Proposition 4.5, we have that we® — W§' 4+ w§ =: wf in H2 (2 qul{xj})
as € — 0. Notice that, by (4.17) and by the very definition of w§ (see (4.12)3,

1—v? 5, 1= 5 L .
(4.19) TA wo=—% AW =— E |b7\8(bg)¢ 0 in 2,
167

Jj=1

i.e., the first equation in (4.14). Finally, the boundary conditions are satisfied since
wg € B o (see (4.13)). d
Now we prove Proposition 4.4.

Proof of Proposition 4.4. Let o = ijl b, € E2(Q) and let w € %7?,9 We
first prove that for every j=1,...,J

(4.20)
1+v < , )
= > ((1 —v) / (O AW )W dH — / (V2Win, V) dH!
i=1 9Bc (z?) dB. ()
S 1 - ;
—i—u/ Awganwdw) + —/ (Va, TI()) dH = O(e).
OB (z) 2me JoB. (x9)

To this purpose, we recall that, for every i =1,...,J, there exists an affine function

al such that

(4.21) W=al—W!=> WF  ondB.(z').
ki

Notice that W7 minimizes the energy Igi’”j referred to the ball Bg(x7); this follows
by a simple translation argument taking (3.16), (3.31), and (4.3) into account. By
the characterization of the minimality provided in (C.9), for every function a which
is affine in B.(27) we have

1-—12
E - Jop. ()
14+v
E  Job. (@)
|07 1

= O iy adH! = ——
2me OB, (i) (Tbj)'ﬁ 2me

(Ou AW )adH + 117

v / AW?9padH!
OB (z7)

(4.22) - (V2Win,Va)dH*

/ (Va,TI(b7)) dH? .
OB (i)

Let j=1,...,J be fixed. We first focus on the case i = j in (4.20). Recalling that Wi
is affine in B.(27), by choosing a =al — W7 in (4.22), we get
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1—v2
E  JoB.(ai)

v, AWId, (al — W) dH!
E  Jop.(ai)

_ H”/ (V2Win, ¥ (al — W) dH"
E  JaB.(xs)

1

2me OB, (i)

(0nAWY)(al — W) dH!

(4.23)

(V(aZ —WH, %)) dH' =0.

Furthermore, recalling that W is smooth in B.(x7) for every k # j, by Taylor expan-
sion we have that for every = € B.(x7)

WE(z) =Wk@)) + (VWE(@), 2 —27) + O(e?) and VWF(z) = VIWF(27) +O(e),

whence, using (4.22) with a(-) :== WF(z9) + (VWEF(27),- —27), recalling that |9, VIW/|

~ |z — 27|71 and |V2WI(z)| ~ |z — 27|71, and summing over k # j, we deduce that

1— 1?2

(O, AW [ =Y WF | dH!
E aBs(:Ej) k-zyéj

1 .
+ ”y/ AWI0, | =S wh | ant
9B.(29)

o
(4.24) i

1+’// 27177 k 1
- V2Win, v [ =S wk | ) an
E aBE(w)< Z

—y

! <v =y wk ,H(bj)> AH' =0(e).

2me Jop. (a1) oyt

By adding (4.23) and (4.24), in view of (4.21), we get

(4.25)
1—0? i\ ~ 1, 1+v o o~ 1
(O AW wdH + v AW 0, wdH
E  Jop. () OB (29)
1 . . 1 - .
Ly (V2Win, Vi) dH' + — (V@ TI(b)) dH* = O(e).
E Jop. (i) 2me JoB. (a9)

Now we focus on the case i # j in (4.20). We first notice that, by the Gauss—Green
Theorem, for any affine function a there holds

0:/ AWIA(-W! +a)dx
B.(z%)

:/ A?Wg(—wg+a)dx_/ Oy AW ) (Wi + a) dH!
(426) B.(z%) OB, (x?)

+/ AW§8(_n)(—Wj +a) d#!
9B (z?)

:/ (6,LAwg)(—W§+a)dH1—/ AWI0, (~W' +a)dH!
9B (x%) 8B (')

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/15/24 to 130.192.232.226 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

108 P. CESANA, L. DE LUCA, AND M. MORANDOTTI

where the first equality follows from the fact that W is affine in B.(x%), whereas the
last one is a consequence of A’W7 =0 in A g(27). Similarly, we have

0:/ VWS VA (~W! +a)dx
B.(z?)

:/ A?Wg(—wg+a)dx—/ (D) AWI)(— W + a) dH"

+/ (VEWI (=n), V(=W +a)) dH'

OB, (z?)

:/ (O AW (=W + a) dH! —/ (V2WIn,V(-W! +a))dH'.
B, (z) OB, (x1)

Furthermore, we have

/ (OnAWYZ) [ =D WE | dH' =0(e),
dB. (at) !

(4.28) / Awi, [ =S wh | ant=o(e),
9B, (x1) Py

/ <V2Wgn,v -y wk >d7—£1:0(6),
9B (z?)

ki

since all the integrands are uniformly bounded in ¢ and the domain of integration
is vanishing. Therefore, in view of (4.21), by (4.26), (4.27), (4.28), for any function
w € B we have that

—yz/ (OnAWY) wd”H1+VZ/ AW 0, wdH!

i#j i 7 OBe(a")
+Z/ (O, AW w dH — Z/ (V2Win, Va)dH' = 0(e),
i#£] 0B, ("Lﬁ i#j 835 :E"

which, together with (4.25_), implies (4.20).
Since the functions W7 (for every j =1,...,J) are uniformly bounded with respect
to € on 012, by the standard trace theorem we get

‘—(1—@/ (anAWg)adH1+/ <V2W37V{E>d7-tl—z// AW 0, wdH!
(4.29) 09 09 a0

< Cl|w|m1a0) < Clwllaz(9. () »

where C' > 0 is a constant that does not depend on ¢.
In view of Lemma 4.1, by (4.20) and (4.29) (summing over j =1,...,J), for ¢
small enough, we get

J
‘ Lty Z/ (VW3 : V25 — vAWI Ad) da
(4.30) '
Z:: 2me / o) (Vo 11(v")) d#) < O (| @2 o +1)

for some constant C' > 0 that does not depend on e.
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Now, by applying Proposition D.2 with f =W and by the very definition of G
n (1.9), we deduce the existence of two constants 0 < C; < C5 independent of € (but
depending on « and §2) such that

(||w||H2(Q () ~ ||Wa||Loo (09) — ||VWS||%oc(aQ)) <G(w;Qe(a))

(4.31) _
<Co| @2 (a (o))

for every w € ,%’ 'q- Therefore, by (4. 30) and (4.31), we deduce (4.15). By (4.15),
existence and uniqueness of the solution w2 to the minimization problem (4.8) for e > 0
small enough follows by the direct method in the calculus of variations. Furthermore,
by (4.15) and by Proposition D.4 applied with f = W and f/ = Zi# Wi, we have
that

(4.32) O[22 ) < I (@) + C”

for some constants C’, C” > 0 independent of € (but depending on o and ). Hence, in
order to conclude the proof it is enough to construct (for e small enough) a competitor
function W% € %QQ such that

(4.33) M@ <C

for some constant C' > 0 independent of ¢.

We construct @ as follows. Recalling the definition of D in (4.2), for every
j=1...,J, we consider @) € C*°() such that ¢/ =0 on Eo(xj) ¢/ =1on QD( )
and |Vo(z)| <
w: Q—R as

=] xJ for every z € Ap b (27); for every e small enough, we define

J
=Y WL
=1

By construction,

J
B +WE=Y (1 )W! € B2
j=1
and
J
(4.34) 10 [ 112 (0. () < 10| r2(0) < ; w2l (A%R(:rj)) <C

for some constant C' > 0 independent of € (but possibly depending on a and on R).
By (4.15) and (4.34) we obtain (4.33), and this concludes the proof. d

Proof of Proposition 4.5. We preliminarily notice that, since G is lower semicon-
tinuous with respect to the weak H?-convergence, (4.16) yields

(4.35) G(wg; Q) <lim igfg(@?; Q. (),
E—r
and hence
(4.36) Ia(wo) < hmlana( w) .
e—0
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Here we have used that the boundary integrals on dB.(x7) vanish as ¢ — 0 in view of
(4.20), and that, by compactness of the trace operator [79, Theorem 6.2, p. 103] (see
also Remark 4.2), as ¢ — 0,

/ O AW e dH! = [ (9, AW )i dH,
o0 o0

(4.37) /<v2wg’n,vag>d%1—> (V2Win, Vag)dH,
o o
/ AWZ0, 02 dH' — [ AW, w5 dH .
oN oN

Moreover, by Proposition E.1 for every w, € é{f q there exists a sequence {W }. C
H?(Q) with @, € B2, (for every € > 0) such that @, — @y strongly in H*(Q). It
follows that

Z§ (o) = lim I (@)

which, by the minimality of w¢ and in view of (4.36), gives

(4.38) I8 (o) = lim Z(@.) > limsup Z (@) > I (ag)) -

e—0 e—0

It follows that w§ is a minimizer of i’g‘ in QZS‘Q By convexity (see (2.7)), such a
minimizer is unique and, by computing the first variation of Z§ in wg’, we have that

it satisfies (4.17). Furthermore, by applying (4.38) with Wy = w§ we get (4.18).
Finally, we discuss the strong convergence of w¢ in the compact subsets of €2\
szl{xj }. To this purpose, we preliminarily notice that, from (4.18), (4.20), and
(4.37), we have that
lim G(wZ'; Qe (a)) = G(w5; Q).
e—0
We now want to show that for every (fixed) r >0

(4.39) / V2@ — V2wg > dz — 0 ase—0.
Q- (a)

To this purpose, we will use the weak convergence (4.16) and Remark 2.3; we start
by observing that

/ V20 — V202 d — ,,/ AT — AGE da
Q- (o) Q. (o)
:/ (V2@ 2 + V2@ 2 — 2V2ag : V2i®) da
Q. (o)
—y/ (JATZ? + |Awg |? — 2Aw5 Aw?) dz,
Q, ()
whence, thanks to the convergence (4.16), we deduce

(4.40) / |v2wg—v2ag|2da;—u/ AT — AT dz — 0.
Q. (o) Q, ()
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Since (see the first inequality in (2.4))

c(u)/ V2w — V2uy|* dz g/ V2w — V2ug|* dz
Q- () Qr(a)

—u/ |ATY — Awy|* dx
Q, ()

for some constant ¢(v) > 0 depending only on v, by (4.40) we get (4.39). Finally, by
(4.16) we get that w® converges strongly in H*(Q), as € — 0, to wg, which together
with (4.39) implies that

(4.41) we — W strongly in H?(Q,.(a)).

In conclusion, for any compact set K C Q\ szl{acj}, there exists r > 0 such that
K C Q,(«), which, in view of (4.41), implies the claim and concludes the proof of the
proposition. 0

We are in a position to discuss the asymptotic expansion of energies and to classify
each term of the expansion.

THEOREM 4.6. For every ¢ > 0 small enough, let we be the minimizer of I in
HBq. Then we have

(442)  Io(wf)=-

J
E bi|?
S8 toge 4 Fla) + £(D. Ri0) e,

1—p2 4
Jj=1

where we =0 as € =0,

(4.43)

J .
b2 E D? [ D?
f(D,R;a):Zgl_ﬂ 2+ 55|z —2) —2logR

R E(E(E ) )

(recall (4.2) for the definition of D), and

(444) F(O[) — FSElf(a) + Fint (a) + FelastiC(a)

1s the renormalized energy defined by

E 2
(4.45) Fl (o Zg Wi;Qp(a — Z 5,17 log D,
J=1
1nt 1 + 14 g k 1
F ZZ (1=v) [ (0.AW])Wg dH
(4 46) J=1k#j 09

+/ <V2W3n,VW§>dH1—u/ Awganwgd#),
o0 oN

(4.47) Felastic (o) .= T8 (@)

Remark 4.7. Notice that F**(a) is independent of D, as can be verified by a
simple computation.
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Proof of Theorem 4.6. By (4.4) and (4.6), we have that wS = W + wg, where
W is defined as in (4.3) and w¢' is the unique minimizer of 72 in %2, provided by
Proposition 4.5. Notice that

J
1 )
GWS Q. (a)) + —/ VW I(K)) dH?
( (a)) ;:1 e aBE(ﬂ_)( )

J

_ i () 4+ I TI(L)) At
=2 (ngg,ﬂa( Vo | oy TVETIO) 02 )

j=1

J
+ ZZ <1 ;”/Q " (V2w v2WE - vawIAWE) da
J=1k#j €

1 _
+— <VW§,H(bJ)>dH1>
2me OB (z7)

=: FESElf(oz) + Feint(oz) .

(4.48)

We notice that, for every j=1,...,J and for every 0 <e <r <D with e <1

1

2me

G(W7;0.(a)) + /8 o WL @

(4.49) )

=G(W2;Q,(a)) + GWZ; A (27)) + —/ (VWI TI(B)) dH" .
2me OBc(x7)

Furthermore, by Corollary C.1, we have that

2 E 1
e lo
8T 1—1v2 €

(450) W Au(2)) + —— / (YW TI(b)) dH" =
2me OB, ()

b7
8t 1 —v2

logr + f.(r, R; |V]),
where f.(r, R;|b?|) is defined as in (C.16).

Notice moreover that f.(r,R;|b/|) — f(r,R;[b’]) (as € — 0) with f(r, R;|b/])
defined by

; ¥ FE r? [ r?
f(r,R;IbJI)::%PU2 <2+R2 <R2—2) —2logR>
JWE_ B RN R
327 (1—-v)2(14v) R? \ r? R2 \ r2 '

By Remark 4.2, summing over j = 1,...,J formulas (4.49), (4.50), and (4.51), for
r =D we obtain

(4.51)

b2

Tl logel + PN (a) + f(D, Ria) 4w

J
(4.52) Ff (o) = — Z

where we =0 as ¢ >0 and f(D,R;«):= ijl f(D, R;|b]).
We now focus on Fi"(a). By arguing as in the proof of Lemma 4.1, for every
j,k=1,...,J with k # j, we have that

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/15/24 to 130.192.232.226 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SEMIDISCRETE MODELING OF DISCLINATIONS 113
/ (VQWg VEWE AW ij) da
Qe (@)
=—(1 —y)/ (O, AWHWE AH! +/ (V2Win, VWF) dH!
o0 o0

—v [ AWI9,WEFdAH' 4+ (1-v) Z/ (D, AWHYWE dH?

9 OB, (z?)
—Z/ (V2WIn, VWE) an'! +VZ/ AWI0,WEdH!,
OB, (z?) OB, (x?)

which, in view of (4.22), (4.26), and (4.28), and using Remark 4.2, implies
(4.53) Fin'(a) = F™(a) + w,,

where w, — 0 as ¢ — 0.
Finally, by (4.48), (4.49), (4.52), and (4.53), we get

J
1 )
G+ X o [ wwe ) a'
= (9

J
)2 E |
Z 4* T2 loee] + F*(a) + f(D, Ry ) + F™ () + we ,

which, by (4.6) together with Propositions 4.4 and 4.5, allows us to conclude the
proof. 0

We conclude by showing, via a diagonal argument, that the asymptotic behavior
in Theorem 4.6 remains valid also for systems of disclination dipoles, that is, when
the finite system o € £2(Q) of edge dislocations is replaced with the approximating
system of disclination dipoles.

THEOREM 4.8. Let J €N, let b',...,b7 € R?\ {0}, and let 2*,...,27 be distinct
points in 2. For every h >0, let 0y, € # P(2) be the measure defined in (3.33). Then

J
(4.54) O Sa:=> Vo, €62(Q)  ash—0.

j=1

Let D >0 be as in (4.2); for every 0 < h<e <D let wZ”’E be the unique minimizer
in B of the functional I " defined as in (3.34). Then there exists a function
e: Rt — RY with e(h) > h and e(h) = 0 as h — 0 such that wh Ly WG in

HZ () U; ,1{:£9}) as h — 0, where w§ is the function provided by Theorem 4.3.
Moreover,

E |b;1>
455) T (W) = 1_sz |loge(h)| + F(a) + f(D, Ry ) +wp,

where F(«) and f(D, R; «) are defined as in (4.44) and (4.43), respectively, and wp, — 0
as h—0.
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Proof. Convergence (4.54) is obvious. Now let 0 < ¢ < D be fixed. By Remark
3.7, there exists h < & such that, for every h < h,

(4.56) lwpt, = wiell ) <e.

where wg', is the unique minimizer of (3.36) in #2q. Choose such an h, call it h(e),
and notice that this choice can be made in a strictly monotone fashion. Now let
0 <r < D; by (4.56) and Theorem 4.3, we get

IIWZ}’L)L - ngHQ(QT(a)) S sz’é))s - wg,sHm(Qr(a)) + lwg.e = willm2 @, (a)) <€+ o0,

. . On(e .
where o. — 0 as ¢ — 0. By the arbitrariness of r we get that wh’(é))a — w§ in

HZ (Q\ szl{xj}), and hence, by the strict monotonicity of the map ¢ +— h(e) the
first part of the claim follows. Finally, (4.55) is an immediate consequence of Theorem
4.6. ]

Appendix A. Equivalence of boundary conditions. Here we show that if
A is a domain of class C? and v € C?(A), then the boundary condition Vvt = 0
on OA is equivalent to requiring that v|r be the trace of an affine function on every
connected component I' of JA. To this end, we first state and prove the following
geometric lemma.

LEMMA A.1. Let ACR? be a bounded, open, simply connected set with C? bound-
ary and set £ :=|0A|. Let v € C%([0,4];R?) be the arc-length parametrization of OA
and let 9 € CL([0,£]) such that v/ (£) = (—sind(€);cosV(€)). Set (&) = V() for
every £ € [0,£]. Let v € C?(A) and let gp,gn: [0,€] — R be the functions defined by
gp :=vo~vy and gy :=0,vo~y. Then

A {92’7(5) = (V20(7(6)) 7' (€),7 (€)) — #(E)gn (£), for cvery € € [0.4].

g (€)= (V2 (7(£) 7' (€), = (V' (§)") + (&) g (€)

Proof. By definition, the unit tangent vector is

t(v(€)) =7'(&) = (—sind(&); cos V(§))

and the outer unit normal vector is

(=7 (€))7 = (cosV(&);sin (),

=

-3

o
I

so that
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and hence
d(€) = d%vms)) — (To(1(E)),7 ().
dy(6) = d%ww(o),n(w(@»
= (V20O (©), (—(€))) + (To(r(©)), (—"())*)
(V201 () (). (=7 (E)1)) + () (Vo (€))7 (€))
= (V20(Y ()Y (€), (= () 1)) + () g (£),
ah(E) = %WU(W(&)M’(&»
— (V2o ()7 (E)) + (To(1(6)). 7" (€))
= (V20(7(£))7'(€),7(€)) — 2()(Vu((£)), n((£)))
= (V21O (€)1 (€)) — (O (€)
that is, (A.1). |

We are now in a position to prove the main result of this section on the equivalence
of the boundary conditions.

PROPOSITION A.2. Let AC R? be an open and bounded set with boundary of class
C?. Let ve C?(A) . Then for every connected component I' of A we have that

(A.2) V2vt=0 onT & v=a, O,v=0na onl,

for some affine function a.
Proof. Let T be a connected component of 9A, set £:=|T|, and let ~y: [0, /] — R?
be the arc-length parametrization of I', so that the unit tangent vector is t(v(£)) =

7'(§) and the outer unit normal vector is n((§)) = (— 7’({))L. Moreover, let ¥ €
C*([0,£]) be such that

(A-3) 7' (§) = (= sind(§); cos V(¢))

and set »#(£) := (&) for every £ € [0,4]. Recalling that {n(y(€)),t(y(&))} is an
orthonormal basis of R? for every ¢ € [0,/], we have V2vt =0 on I if and only if

(A4) (V20(())7(©),7'(€)) = (Vo(v(£) 7' (£), —(Y(£) ") =0

for every £ € [0,¢]. Furthermore, letting gp,gn: [0,¢] = R be the functions defined by
gp :=vo~v and gy :=dpvo~, Lemma A.1 and (A.4), imply that (A.2) is equivalent
to

(A.5)
9p (&) = —(&)gn (&), . . Jv=a onT,
{gﬁv(f) ()9 (©) for every £ € [0,/] if and only if {  w—8.a onT

for some affine function a: R2 — R?, namely, for a function a of the form

(A.6) a(x) =co+ 121 + 22,
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with c¢g,c1,c0 € R. If v=a and 9,v = 0,a on I', by straightforward computations for
every & € [0, /] we get

gn (&) =c1cost(§) + casind(§),

gp (&) = —c1sind(€) + cacosI(€),
gﬁv(f) 19( )(— e1sind(€) + c2cos9(§)) = #(§)gp (€),
9p(€) = —9' (&) (c1 cos () + c25ind(€)) = —3(§)gn (€)

which proves one implication in (A.5). To prove the opposite implication, we study
the ODE system on the left-hand side of (A.5), which, setting z' := g}, and 22 := gy,
can be conveniently rewritten in the form

(A7) {(zl)/ =~

(%) = 52t

By the classical theory of ODEs, since s is a continuous function, for any given initial
datum zg = (23;23) € R?, the Cauchy problem associated with the system (A.7) with
initial condition (21(0); zQ(O)) = 2(0) = zp admits a unique solution z € C'*(]0,¢]; R?).
Furthermore, letting 9 denote a primitive of s, we observe that the functions & —
Z(€) = (—sind(€);cosd(€)) and € — 2(€) := (cosV(€);sind(¢)) provide a basis of
solutions to (A.7). Therefore, since 1 and ¥ differ by a constant, any solution to (A.7)
is of the form

(21 2%) = (—c1 sin® + ¢5 cos¥; ¢1 cos V) 4 cosin )
so that, recalling the definitions of z! and 22 and using (A.3), we get
gn () = crcos¥(§) + casind(§) = ((c1;¢2),n(v(€))) ,

A8 13
(4-8) gD(ﬁ)ZgD(O)JF/O(—Clsim?(C)+62C0819(C))dC=¢Co+<(01;62)ﬁ(§)>»

where we have set ¢ := gp(0) — c171(0) — ¢*v2(0). By (A.8) and the definitions of
gp and gy, we get that v = a and 9,v = Jd,a on I', for a certain function a as in
(A.6). This concludes the proof of the converse inequality and hence of the whole
proposition. 0

Appendix B. Proof of Lemma 3.2. This section in devoted to the proof of
Lemma 3.2.

Proof of Lemma 3.2. By (3.6) and (3.7), straightforward computations show that
(B.1)

E2 2 _h 2_|_ 2
V205 (2)|* = T ona = 5 8log® —(x1 2)2 =
(1—v?)? 256 (21 +5)" + 23

B2 i o2
(=27 +03) (w1 + 2"+ 3))

h h 2
+32x§( . )
(21 =52 +a3 (21 4+2)° +43
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and

E? 5 2 (21— %)2 + 3
(1—V2)2 1672 (l‘l—i-ﬁ)Q-‘rl‘% ’

(B.2) | AT (2)]* =

For every open set A C R? we set

(B.3) FlA):= /A log? g:gi i:"

B = [ (1= 27+ 03) (G + 0" +23) )

o A 2
(B.5) Fi(4) ZZ/ f%( xlh i 2 > ) a%
a4 N@=52+a3 (2 +8)" +a3

e a)

so that, in view of (B.1) and (B.2), it holds that

N
o
8

2

/ V20,2 da = ﬁ 372 (}'h(A) +16F;(A) +4f,§(A)) ,

/|M Pdo=—2 = pa
PN SRV EET i

We start by proving that

(B.6)

E $?
1—1287"

1
m ————-G(0p; Ap,r(0)) =

B. i
(B.7) M g B

To this end, by the very definition of G in (1.9) and in view of (B.6), it is enough to
show that

(B3) i g T (Anr(0)) = 4.
h
1 T
(B.9) %;0 W-}-}%(Ahﬂ(o)) =3
1 s
(B.10) lim R log £ —— Fi(Anr(0) = 5"

To this purpose, for every 0 < h < R, we set Ny, := { loggg W so that 2N —1p < R < 2Nnp,
We start by proving (B.8). By using the change of variable x = 2" 'hy for every

n=1,...,Np, we have

Nn—1 59p n\2 2
2 27") +y
h? / —Zdyg}'l Ap r(0
Z A12(0 (y1 +27")2 +y3 #(An r(0))
(B.11)
92n —9- 2
<hgz / (y1 )2 +y§ dy
A12(0) y1+2 )2+ ys
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We start by discussing the limit of the left-hand-side integral in (B.11). Let K < N,
and let h be sufficiently small; then, for every n = L%J,...,Nh — 1, and for every
y € A1 .2(0), by the Taylor expansion of the functions log(1+t) and ((y; +¢)? +y3)~!
around the pole t =0, we have that

_9—n 2 2
lo Q(yl ) +y2:10g2<17227’n n )

> 242n|y|%4 _(9-3n
Yy

for some universal constant C' > 0. Therefore, by (B.12), we deduce that

Np—1 n -n
N Z log? ()1 —27") +u5
—~ Ay 5(0) (y1 +27")2 +y3
Na=1 5op —n
B e,
T YA T 2
n=| 7
Np—1 4 2 Np—1 1
> ) / Shay—c Y 27z N (1- - )arlog2—C.
Y 41.2(0) 1] —
- LK

By the very definition of Nj, and by (B.11), we thus have that
1

R
h?log 7
where w(h) — 0 as h — 0. By sending first h — 0 and then K — +o0 in (B.13) we
get the inequality “>” in (B.8). As for the inequality “<” in (B.8), we preliminarily
observe that, by arguing as in (B.12) for h sufficiently small, for every K < Ny, for
every n= |4 |,...,N), — 1, and for every y € A; 5(0), it holds that

o (1 —27") 4y Y1 ot—2n Ui 4+ -
2—m)2 2 92—n)2 2] = 4
(1 +277)2 + y3 (y1 +277)% +y3 |yl

for some universal constant C' > 0; therefore, for h sufficiently small and for every
K < Ny, we get

FiAnp() > (1- i)zm +w(h),

(B.13) =

log log? (1 — 2% n

ok, g2n o (11 —27") 413

= 4 Jais0) (y1 +277)2 +y3

Np, o —n\2 2
N, 22n —2-n
<Co+Cy {—ﬂ + E / log? (27" +ys dy
K Aq.2(0)

n=[24] 4 (yl + 27”)2 + y%
K
Ny, 2
Nn 4yq
SCO—FCJ*_‘-F E / T dy+Cs
s R EIC) lyl*

N, 1
<Cy+C4 ’V?h—‘ +Nh(1 — ?)47rlog2+02
for some universal constants Cy,Cy,Cy > 0. Therefore, by the very definition of Ny,
and by (B.11), we get
1 Ch

1
1
- < — R
e g.Fh(Ah,R(O)) <—+4+ (1 )47T—|—w(h),
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where w(h) — 0 as h — 0. Now, sending first h — 0 and then K — 400, this implies
also the inequality “<” in (B.8). In order to prove (B.9), we notice that

Fi(An,r(0))

2 R o7
= h2/ dﬁsin419(:05219/ 5 dp
0 h ((p2—hpcos19—|— hf)(;ﬂ—l—hpcosﬁ—&—%z))
27 R p7
:h2/ dﬂsin419(305219/ sdp,
0 h (,04 — 21 cos(29) + %)
so that
1 o 4 2 f P’ 1 2
— ddsin” ¥ cos” dp < Fi(An r(0
log & /0 " /h (p%+ ’ﬁ)‘l P= e log & n(An.r(0))
(B.14) 4

1 27 R p7
< R/ dﬁsin419c05219/ ﬁdp.
log 5 Jo no(p? =)

By the change of variable t = £, we have that

R p7 % t7
/724(1/’:/ el
o (PPFh) L (2F3)

and, by ’Hopital’s rule, we get

R

1 oot NB
(B.15) lim R/ —pdt= lim ———— =1
h—0 logﬁ 1 (t2:FZ) N—+o0 <N2:FZ)
Now, since
2w T
(B.16) / sin* ¥ cos® 9 d = =,
0 8
in view of (B.14) and (B.15), we obtain
(B.17) lim — - F2(Anr(0) =~
. h% h,2 log% h h,R - ] )
ie., (B.9).
Finally, we prove that also that (B.10) holds true. To this purpose, by using the
change of variable x = 2"~ 'hy for every n=1,..., N, we have
Np—1 20,2 _ .2 1 9—2n
Yoy —yi +2
h? / 23 v ) 5 dy < Fj, (An,r(0))
=1 I A1200) ((

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/15/24 to 130.192.232.226 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

120 P. CESANA, L. DE LUCA, AND M. MORANDOTTI

Therefore, by arguing as in the proof of (B.8) we have that there exist two functions
wy,ws with w;(h) — 0 as h— 0 and a constant C' > 0 such that

! ( K)Nh log2—|—w1(h)< ]:}?;(Ah,R(O))

1
log % ~ h2log %

C Nh 1 ™
— 1——)Ny—log2 h
_log% K +log%( K) hig 108 +wa(h),

whence (B.10) follows by sending first A — 0 and then K — +oo.
Now we show that

1
B.1 lim —=G(vy; B =0.
( 8) hl_>rno h2 10g %g<vh7 h(O)) 0

By the very definition of G in (1.9) and in view of (B.6), it is enough to prove that

1
(B.19) }lllgb 2 logf]:h (Br(0))=0 for every k=1,2,3.

Notice that
h
+
0 < Fi(Bp(0)) < 271'/ plog® Ep22 dp,
0 p

so that using the change of variable t = £, we get
1 10 t+1)?
0< ]-'h( 1(0)) <27 R/ tlog27( Z)th,
h?log log 7+ Jo (t _

whence the claim (B.19) for k=1 follows since

1 1\2
/ tlogQ(t;i)th<+oo.
0 (t=3)

Now we show that

(B.20) lim thh(Bh( ) =0.

To this purpose, we notice that, by the very definition of .7-'}% in (B.4), by passing to
polar coordinates (p,1J) and by using the change of variable t = £, we can write

27
]__h Bi(0 / dt/ Tsin* ¥ cos? 9 _do
f% +t281n219>

2
/ dt/ Tsint 9 _dv;
f% +t281n219>

since the integrand above is m-periodic and bounded when 4 is far away from 0, 7,
and 27, in order to obtain (B.20) it is enough to show that for ¢ > 0 small enough we
have

(B.21) / dt/ Tsin’ 5 di) < 400.
—i +t28in219)
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By a first-order Taylor approximation, the integral above is equivalent to

7,94
/ at / 1 _d9
t2 1 —|—t2’l92>

4

2
e 3 (t2 - i) 2,2 1 et
= 5 /0 <€t (W + 2 — 3t (t — 1) arctan @ dt < ‘|‘OO7

which proves (B.21) and hence (B.20). Analogously, by the very definition of F} in
(B.5), by passing to polar coordinates (p, ) and by using the change of variable ¢t = £
we have that

3 27 3 gin 19 —t2 cos 219) 2
.7: (Br(0 / dt/ 3 dd < +o00,
% + 2 sin? 19)

where the boundedness can be proved by arguing as in the proof of (B.21). Indeed, by
a first-order Taylor approximation, the integral above close to ¥ =0, 7, 27 is equivalent

to
t3192 — 12 4 22992
[l / ) a9,
— 1)+ e202)

which can be proved to be finite by a stralghtforward computation. This proves (B.19)
also for k=3, so that, by (B.7) and (B.18), the proof is concluded. 0

Appendix C. Proof of Lemma 3.6. This section is devoted to the proof of
Lemma 3.6.

Proof of Lemma 3.6. With some abuse of notation we set Wy _:= W&?‘SO, where
W&?‘SO is defined as in (3.27). We preliminarily show that Wg. € %. g. To this
purpose, we first notice that

BE 5 9 R2 62 5 2 R2
+v.R*+2log R*=2 —2log R +2R2+ 3 _2R2+52

Qe+ +2log R* =

R? R2 4 &2
and hence
(C1) W5.=0  on dBg(0).

We define the function Wo,az A r(0) =R as

—~ 1
(C.2) Wo () := (a6+ﬁ€|$|2 —&-%|a:|2+210gx|2>x1a
and we notice that
s s E — .
(C.3) Woe=1e-7-,2Woe  in A r(0).

For every x € A, r(0)

a2
. 2|7‘+75(|x\2+2x1)+210g|z|2+4| E
VW075(:C):

)

1T x
—20¢ ‘1|42 + 2v.z172 + 4 ‘1|22
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whence, for x € 9Br(0), we deduce that

_ - 22
0 Wo,e(z) ="~ <a5+ﬁs +'y5(|x|2+2x1)+210g|x|2+4| |2>

R \ |
+ﬁ ( Qﬂs 4 +2’75$1-T2+4 1$2>
R | | ||
:% <a5 ﬁ|€2 +375|x2+210g|x|2+4)
T
— El <a5 Z; + 37.R? + 2log R% + 4>
2 _ .2 2 2
S S S L) B
R\  R2+¢2 R2 +¢2 R2 +¢2
and, consequently,
(C.4) W5 .=0 on OBR(0).

Moreover, it is immediate to see that W _ € C°(Bg(0)). Furthermore, the inner and
outer traces of 3, W at dB.(0) are continuous so that W _e€ H'(Bg(0)). Therefore,
in order to check that W§ . € H*(Bg(0)) it is enough to show that

(C.5) HVWo.=0  on dB.(0),

where ¢ is the tangent vector to B, (0). To this end, we observe

V2Wo.(z) =
21 (322 —22 22+ 32 2o (322 —a2 22— g2
2020 o an B 05, 2O 0, B
To(3x2 —x2 1:2 x? x x273x2 x2—x2
2552(@6)+2%x2+4x2|41 —Qﬁsl(ﬁr|)+2%x1+4x1 1| 1 2

so that, for x € 9B:(0), we have

a1 (323 — a7)
||

T 29(322 — x2 2—x2

+ 2 (2 a+an B o)

1 Pe 8 1 Be 8
—- 47y ——):f <47_4 _7)
5I1I2( || e |x|? e \Fa T T 2

|z|? + 2x§)

8I1V/I/[705't:—@(—255 +6"}’€(E1+41'1
’ € |2|*

8 R? n 1 1 _0
= -1
e P\ 2(R24e2) R24e2 22

and, analogously,
— 2 2
(C?) axszo7€ t:g(Ig —Il) (fs Ye — 5 ) :O

Finally, by (C.1), (C.4), (C.6), (C.7), and using that W . € C*(A. r(0)), we deduce
that Wosﬁ S (%57]%.
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Now we prove that W _ is the minimizer of Ig?‘sg in #. r. In view of (3.21), for
every ¢ € B r, W; . must satisty

d Se
0= | T2 (Wi +t0)
1
_ ;” </ V2W§’€:V2¢dx—y/ AWG. A¢dx>
Ac r(0) Ac r(0)
+ o Da, pdH!
2me 8B.(0)
1-— Vz 21178 7 VQ s 1
=— AW pda + O AW . dH
Ac r(0) 8B (0)
1+
+ E” / (VAW . — (V2§ n) O dH + / 2iam1¢d7¢1,
8B.(0) dB.(0) 4T

where we have used that ¢ = 0,0 =0 on 0Br(0) and, together with integration by
parts, obtain

/ VW Vioda = / AW . pdx + / (V2W§ o, V) dH?
AE,R(O) AE,R(O) aAs,R(O)
- / D (AW ) dH!
9Ac r(0)
= / A’Wg . ¢da
AE,R(O)
+ / (O (AWS ) — (V2W .n, V) dH',
9B:(0)
/ AWS . Apdx = / AW pdz + / AW OnpdH
AE,R(O) AE,R(O) aAs,R(O)
_/ ¢an(AWOie)dHl
9Ac r(0)
= / A’Wg . ¢da
AE,R(O)
+ / (P On(AWS ) — AW Onod) dH' .
9B:(0)

Therefore, proving the minimality of Wy _ is equivalent to showing that

(C.8) A*Ws . =0 in A. z(0),
1—12
(C.9) O AWE . pdH!
E - Jop.(0) ’
1
J};” (VAWG . — (V2WE ) Ono M
9B:(0)
+/ i(“)wl(bd?‘-ll =0 for every ¢ € B. r.
9B.(0) 2me

By (C.3) and the very definition of WO,E in (C.2), the biharmonicity in (C.8) follows
by a direct computation, so that we are left with proving (C.9). To this purpose, we
notice that
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s E — s FE 1
AW . = —— AWy .= —— —
0= T6m1 02 0T or1 2t <%+ |w2> ’
S E T 1
anAWos,g = 57T o7 ('YE - |(E|2> ,

21— 12 ||
3 2

3 -
flf|4 + /76+ |§C|2 )

9rrrs s E
(V WO’E)Tm_Sﬂl—szl<

whence we deduce, recalling (3.28),

S

E 1 s E  R?*-¢?
0B.(0) 21 1_12 1(%+572):%1—1/252(R2+52)
s E 1y s FE R? +3e% a4

(Vg_i)__%l—u2€2(R2+€2)?7

(C.10) AW,

X1,

C.11 O AWS =——— -
( ) P B0y 21 —12 ¢

; S E Be 2
C.12 2WE Dam Pe f3y. 4+ 2
(€12 (W], =z (S 3t )
_ s FE R? —¢2
C2m1— 12 e2(R2 +£2)

Iy .

Furthermore, every ¢ € %, r satisfies ¢(r) = ay + bpx1 + cpz2 for every z € 0B.(0)
for some ag, by, cy €R, so that the equation in (C.9) can be rewritten as

(C.13)
1— 12

/ O AWE _dH' =0
E  Jap. (0 ’
1—1? 1+v1
A s A 2 s 1 — _
/035(0) o ( E On AW+ E ( Wi (v WO’E)"")> #

1— 12 s 1+vl o -
/BBE(O) CE2( E 8nAW()’5 E ( AWO € (v WO75)nn)> dH" = 07

which follow by straightforward computations from (C.10), (C.11), and (C.12).
Now we compute Zg'. (W .). As for the second summand on the right-hand side
of (3.20), we have

s s2 FE R R?-¢?
C.14 — O W dH' =—"——— [ log = — .
( ) 2re Jop.o) 0.7 4771—u2<0g€ R2+52>
Moreover,
/ AW |2 dz = / ! )de
Aen@) F l—V“ pon) VT TP
] ( 7)e
p p
47r 1—1/2 2 /).
R*— ¢t 9 R
47T 1_1/22(7 +7:(R 6)+log5)
o R R? — ¢
1—1/2 & TRt
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and

V2 Wo e |* = |AWo o |2 — 202 Wo 0% Wo - + 2102, Wo <[

1T
2
1 8 32 32
Py 2 2,2 2 2
ot (1e+ ) + 2 =02 — At s
4 4
8(x2 — 22)[ —~2 2%_7_7
+8(aq $2)< e+ iz [zt |x|2% ’
so that, recalling (3.28),
2 E? R R?-¢?
VAWE _Pde =" ——— (10 ) .
~Lamm| ocl r1—2)2 e T R ye
It follows that
2 FE R R?-¢2
C.15 We A n(0)) = B (1op A E
(©15) 675 Aer(0) = 5 (lon T - 75 )
and hence, in view of (C.14),
2 2 _ 2
se0d sy S E R R*—¢
L5227 (Woe) = S 8r1—12 <log e RZ+4e2)’
ic., (3.29). O

The next result follows from the proof of Lemma 3.6 by straightforward compu-
tations.

COROLLARY C.1. Let s € R\ {0}, 0 < e < R, and let W&?JU be the function
defined in (3.27). Then, for every e <r <R,

s* B r s E r?-e? [(r?4e?
WS€26O'A ., o= & r s -
g( 0, 8,()) 8m1— 12 0g€+8W1_V2R2+52<R2+62 )
_|_i E r2 — g2 R72 1
321 (1 —v)2(14+v) R2 +2 \ r2
r?+e? (R?
— | +1) -2
X<R2+62<r2+) >’
and hence
g(WOS?SO;Aar(O))—Fi/ 8m1W585260 At
7 7 2me JoB. (0) ’
82 E 1 52 E
8ml— 12 Og5+8ﬂ-1_yz ogr + f(r, R;s),
where
(C.16)

2 E R2—eg2  p2_g2 /p24 .2
Ris) = 9 ( ~2)-21
Je(r B s) 87r1—V2( R R1e\REie? OgR>

52 E r2 —¢e2 [ R2 r?4+¢2 [ R?
o L) (2 (1) -2).
27 (1—v)2(14+v) RZ+e2 \ r2 R2+¢2 \ r2
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Appendix D. e-independent integral inequalities for H? functions. Let
a= Z}]:l b8, € ED(R). Here we prove a Poincaré-type inequality for functions in
H?(Q.(a)) where the Poincaré constant is shown to be independent of . The proof
is obtained by combining the “e-independent Poincaré inequality” contained in [18,
Proposition A.1] and the generalized Poincaré inequality contained in [23, Theorem
6.1-8(b)], which we recall here.

PRrROPOSITION D.1 ([23, Theorem 6.1-8(b)]). Let ' C Q be a connected and open
set and let To C O be a portion of the boundary with H'(To) > 0. Then there exists
a constant C (') >0 depending only on Q' such that for every function u € H'(Q) it
holds that

)

Now take €' C  such that 09 D 09 and I'g = 9N in Proposition D.1. Moreover,
let f be a function which is smooth in a neighborhood of Q. Then for every u € H*(Q)
with u = f and 9,u =9, f on 9, thanks to Jensen’s inequality, formula (D.1) reads

(D.1) u(x)|2dx<C(Q')( |Vu(z)|? dz +
o o

/FO u(z)dH ()

02 [ ju@Pdr<c@) [ Vu@Pdo+C@.00) [ (f@P d @)

o ol 0
analogously, noticing that V(u — f) =0 on 9f, by applying (D.1) to 9,,u and 9,,u,
we obtain

(D.3) \Vu(x)|2d:c§2C(Q/)/ \v2u(x)|2dx+0(9',am/ |V f(x)|?dH (x).
Q Q' o0

PROPOSITION D.2 (e-independent Poincaré inequality). Let o € &2(Q) and let
0<e < L with D defined in (4.2). Then there exists a constant C1 (2, ) > 0 depending
only on Q and on spta, and independent of €, such that the following holds true. For
every function f which is smooth in a neighborhood of OQ and for every u € H?(£2)
with u= f and Op,u= 0, f on 02

(D.4)
/ |u(m)|2dx+/ Vu(x)zdngl(Q,a)</ V2u()[? da
Qe () Qe () Q. ()

B o + Vf”%oo(aﬂ)) |

Proof. The proof follows that of [18, Proposition A.1]. We recall here the main
lines of the proof for the reader’s convenience.

Let j = 1,...,J be fixed and let the pair (r;1) denote the polar coordinates
centered at 7. Let ¢ < s < D/2 < p < D (with D defined as in (4.2)) and let
¥ € [0,27]. By the Fundamental Theorem of Calculus, we can write

P
(s, ) =u(p.0) ~ [ S )ar,
so that (by recalling that (a — b)? < 2a? + 2b?)

o 2
s ) <2t o)+ [ S o)ar
s T
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and in turn, by Jensen’s inequality,

(s, 9) 2 < 2lu(p, )+ 2(p — 5) / "|ou

< 2|u(p, )|2—|—2D/ dr.

We now multiply by s and integrate with respect to 9 to obtain

2 2m 2m
/ s|u(s, 19)\2d19<2s/ lu(p, )|2d19—|-2D/ /
0

2 2m
(D.5) §2/ |u(p,19)|2pd19—|—2D/ / |Vu(r,9)|? rdrdy
0

7"19)

(r,9) sdrdﬁ

27
:2/ |u(p, )|2pd19+2D/ |Vu(z)]?dz.
0 sD :EJ)

We now integrate with respect to s in [5, 5 ] (notice that the right-hand side does not
depend on s) to get

27
/ / 9)|? sdsdv
27
<2(—5)</ |u(p719)|2pd19+D/ |Vu(x)|2dx>,
2 0 Ac.p(a9)

27
[ m@PdeD [ juGoPedoD? [ Va)Pds
A p(29) 0

Ae,p(a7)

whence

an integration with respect to p in [%, D} now yields

/ \u(x)|2dx§2/ |u(m)\2dx+D2/ |Vu(z)|* dz
A, p (@) Ap p(@d) Ac p(zd)

§2/ |u(x)|2dx+D2/ |Vu(z)|? dz
Q%(a) Ae,D(ij)

SQC(Q%(a))/ |Vu(z)|? da

Qp(a)
2
2
+2C(QD(04))‘ fx)dH  (x) +D2/ |Vu(z)|? dz,
2 o0 e,p(x7)
where we have used (D.2) in the last inequality. Therefore, by using (D.2) again, we
have
)2 dz = / |2dx—|—/ fu(z) [ de
/QE(O‘) Z 2 Qp ()
) 2
D6) <(27+ 1)C(Qg(@)) / CRE
D «@

—|—D2Z/ |Vu(z)|* dz

Ae, D(?“)
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+2(J + 1)0(9% (), 00) / |f ()| M (z)
[e]9)
<(27+1)Cap (a) / V() de

E(a

+JD /Qs(a)|Vu(x)| dz
£ 2(J 4 1)C(p (), 00) /BQ|f(x)|2dHl(a:)

< max {(2J + I)C(Q%(a)),JD2}/ |Vu(z)|?da
Qc (o)
+2(J +1)C (2 (w),09) /m|f(x)|2d}t1(x)

gam,a)( / T e ||f|%oc<am>,

where we have set C (€2, &) := max {(2J + 1)0(9% (@), JD?} +2(J + I)C(Q%(a)).
By repeating the same reasoning for d,,u and J,,u and by using (D.3) in place of
(D.2), we obtain

/ ( )|Vu<x>|2dxszé%<n,a>( / CIE ||Vf||%w<am),

and the proposition is proved with Cy(Q,a) := 3C2(Q2, ). d

PROPOSITION D.3 (e-independent trace inequality). Let o € £2(2) and let e >0
satisfy (4.2). Then there exists a constant C2(), ) > 0 depending only on Q and on
spta, and independent of €, such that, for every function f which is smooth in a
neighborhood of 0 and for every u € H?(Q) with u = f and Opu = O, f on 09, the
following fact holds true:

/ ()P AH () + / V()P dH (z)
00 () 00 ()

< Co(Q, ) (/Q o [V2u(z)|* do + ||f||2090(89)> .

Proof. By [18, Proposition A.6], there exists a constant C'(£2, ) depending only
on Q and on spt a such that, for any function v € H*(£2), there holds

(D.7) / lv]?dz < C(Q,a) (/ |v\2dx+/ |Vv2dx> .
0 () Q. (a) Q. (a)

We conclude by applying (D.7) with v =u, v = 0,,u, and v = 0,,u and using (D.4). O

PROPOSITION D.4. Let o = Z;-Izl Vo, € ED(N) and let € > 0 satisfy (4.2).
For every j = 1,...,J let f7 and al be two functions with f7 & C'OO(B% (27)) and
al affine. Moreover, let f be a function which is smooth in a neighborhood of 99
and v € H*(Q:(a)) be such that uw = f and Opu = O, f on OQ and u = al + f7 and
Opu = Onal + Onf? on OB.(a?) for every j=1,...,J. Then the function u: Q — R
defined by

u(x):= {U(I) A z:f:z < QE(Q)’
al(z) + f7  if v € Bo(a?)

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/15/24 to 130.192.232.226 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SEMIDISCRETE MODELING OF DISCLINATIONS 129

is in H%(Q) and satisfies

J
@l 20y < C | 1V2ull L2 (0. (0)r2x2) + || f o= (002) + Z ”fJ”COO(B%(zJ'))

j=1

for some constant C independent of u and of € .
Proof. By assumption and by Proposition D.3, we have

J
Z la + fj||12r{1(aB€(w)) < JC2(Qaa)(||V2UH%2(QE(Q);R2X2) + ||f||?,*oo(asz)) ]

Jj=1

which implies, in particular,

J
Z [|al H%Il(aBE(mJ))
j=1

J
< JC () ||V2U||2L2(Qs(a);R2x2) + ||f||2C°°(89) + Z 1f Hi{l(aBs(ﬂ))

j=1
Since af is affine, this implies that, for every j=1,...,J,

||a£|\12711(35(x1))
J .
< JC2(Q,a)e ||V2u||%2(95(a);]1§2><2) + ||f||20<x>(a§z) + Z Hf]”%{l(BBE(:rj)) ;

j=1
which immediately provides the claim. ]

Appendix E. A density result for traction-free H? functions. In this
appendix we prove that, given a = Z;-Izl Vo, € £2(Q), any function w € B
(see (4.13)) can be approximated in the strong H? norm by a sequence of functions
we € B (see (4.5)). The rough idea is (up to modifying the boundary datum)
to replace w + W¢ (see Remark 4.2) with its first-order Taylor expansion in B (z7)
(j=1,...,J). We highlight that W is not even in H?(Q2) but, in view of Remark
4.2, it is the strong HZ _ limit of W2 := Z}le W7, where W/ is affine in B.(27) and
smooth in B.(2*) with i # j. This allows us to approximate W§* in the desired manner.
Then we approximate w by a sequence {vg } of smooth functions and apply Taylor’s
formula with Lagrange remainder to further approximate each vy, by a sequence {vy ¢ e
that is affine in U;zl B.(27). Finally, the claim is obtained by summing vy . to the
contribution approximating W', and by using a diagonal argument.

PROPOSITION E.1. Let a € £D(Y). For every w € @&Q there exists a sequence
{we}e € H?(Q) with w,. € B for e >0 small enough, such that we — w strongly in
H?(Q) as e —0.

Proof. By standard density arguments, there exists a sequence {vy }ren C C*°(£2)
such that vj, — w strongly in H%(Q) as k — co. Furthermore, we can assume that
there exists a sequence {0y }reny with d; — 0 as k — oo, such that vy = —W§ in a
dr-neighborhood of 9f).
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Let spta={z!,...,27}. For every j=1,...,.J and for every k € N, we set
ol (x) == v (7)) + (Vor(a7), . — 27) for every z € R?;
moreover, we consider a C? function v: [1,2] — [0,1] with (1) =0, y(2) =1, v/ >0

in (1,2), 74.(1) =0=+"(2), and 7} (1) =0=~"(2). For every 0 <& < £ min{D, §;,}
(with D defined as in (4.2)) we define the function vy .: @ - R as

ﬁi(x) if v € B.(27),
Uhe () = (1 - 7( u ;Ij | ))ﬁi(l’) + 7(@)%(%) in Ac (%),
vg(2) if x € Qo ().

Notice that, since € < %, we have that vy . coincide with —Wg' in a %’“—neighborhood
of 09). We claim that, for every k € N,

J

(E.l) ||Uk,a —'Uk”H2(Q) :Z”Uk,e _Uk”H?(BgE(xj)) —0 as e —0.
j=1

To this end, we prove that for every j=1,...,J
(EQ) ||Uk,s - ’Uk”Hz(Bzg(Ij)) S C@||v2vk”Loo(Q;R2X2)

for some universal constant C' independent of k and €. Indeed, fix j =1,...,J. By
the Taylor expansion formula with Lagrange remainder, we have that

v 1 , , ,
(£3) 160 =0kl on =7 [ TPkl — 7)o = o) da
BZE(xJ)
< O V20| oo (crimx2) 5
(B.4) Hwi—Vvk||2Lg(Bk(wj);R2):/B ( .)|V’uk(xj)—Vvk(x)|2dﬂc
2e (7

< || V20| oo (rmx2) »
(E.5) HV%i - V2Uk||2L2(BQE(xJ‘);R2x2) = ||V2Uk||%2(325(x1);]1§2><2)
< CE2||VP0k]| T oo (%2

where in (E.3) & is a point in the segment joining 27 and z. Furthermore, since

) C )
(%) << (%)
€ JllLeo(AL e (0)R2) € €

by (E.3), (E.4), and (E.5), we deduce that

C

S?a

L2 (Ac,2¢(0);R?*2)

[vke =l 22 oo @iy) SN0 = Okl T2 oo @iy S O IV T (@ max2y »

IV 0r,e = Vol 22 (a, 5. o) m2) < ;QH% — Vkl| 72 (B, o))

+ C|\Vo, — Vuill32(,. (w)m2)
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< CE4||V2’Uk HLOC(Q;R2><2) ,
c
IV20r,e = V20k| 24, ,. (21ym2x2) < gjﬂvi — 01728y (a1
C N 2
+ ;2||Vﬂi = Vi 728, (29):r2)
+ CHVQ”LA% - v2vk||%2(325(w]‘);R2x2)
SC€2||V2U]€‘|%OC(Q;R2X2) 3
whence we get that

Hvk,g — UkHHz(Aa,zs(Ij)) S 05||V2’UkHLOO(Q;R2X2) ]

this fact, together with (E.3), (E.4), and (E.5), implies (E.2) and hence (E.1). More-
over, up to using a cut-off function, in view of Remark 4.2, we can assume that
vge = —WS in an e-neighborhood of €, so that the boundary condition in the
definition of 2, in (4.5) is satisfied.

To recover the traction-free condition on each OB, (z7), we notice that each func-
tion W7 (defined as in (4.3)) is affine in B.(z7), whereas it is smooth in Uizj B (z?).

Therefore, for every j = 1,...,J we define the function ij: Bp(2z7) — R as the
affine contribution of all of the W for i # j, i.e.,

W2 ()= 3 (Wia!) + (TWi(a!),o = o).
i
Now, we define the function Wt : Q — R as

Wi (z) + Wi (z) — W () if z € Bo(27),

€
0 if x € Qe ().

Wee) = (1= (B22)) @) + w20 - w2) it duan(e),

By the very definition of W2 (see (4.3) again) it is easy to check that
||W?HH2(Q)_>O as €—0.

For every k and ¢ as above, we define wy: 8 =+ R as wy ¢ :=vg + W?, and we notice
that it belongs to ., by construction. Therefore, by a standard diagonal argument,
there exists a sequence {w;}. with w. =wy(.),. satisfying the desired properties. O
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